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ABSTRACT

NETWORK ANALYSIS WITH NEGATIVE LINKS

By

Tyler Scott Derr

As we rapidly continue into the information age, the rate at which data is produced has created

an unprecedented demand for novel methods to effectively extract insightful patterns. We can

then seek to understand the past, make predictions about the future, and ultimately take actionable

steps towards improving our society. Thus, due to the fact that much of today’s big data can be

represented as graphs, emphasis is being taken to harness the natural structure of data through

network analysis. Traditionally, network analysis has focused on networks having only positive

links, or unsigned networks. However, in many real-world systems, relations between nodes in a

graph can be both positive and negative, or signed networks. For example, in online social media,

users not only have positive links such as friends, followers, and those they trust, but also can

establish negative links to those they distrust, towards their foes, or block and unfriend users.

Thus, although signed networks are ubiquitous due to their ability to represent negative links

in addition to positive links, they have been significantly under explored. In addition, due to the

rise in popularity of today’s social media and increased polarization online, this has led to both

an increased attention and demand for advanced methods to perform the typical network analysis

tasks when also taking into consideration negative links. More specifically, there is a need for

methods that can measure, model, mine, and apply signed networks that harness both these positive

and negative relations. However, this raises novel challenges, as the properties and principles of

negative links are not necessarily the same as positive links, and furthermore the social theories

that have been used in unsigned networks might not apply with the inclusion of negative links.

The chief objective of this dissertation is to first analyze the distinct properties negative links

have as compared to positive links and towards improving network analysis with negative links by

researching the utility and how to harness social theories that have been established in a holistic
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view of networks containing both positive and negative links. We discover that simply extending

unsigned network analysis is typically not sufficient and that although the existence of negative

links introduces numerous challenges, they also provide unprecedented opportunities for advancing

the frontier of the network analysis domain. In particular, we develop advanced methods in signed

networks for measuring node relevance and centrality (i.e., signed network measuring), present

the first generative signed network model and extend/analyze balance theory to signed bipartite

networks (i.e., signed network modeling), construct the first signed graph convolutional network

which learns node representations that can achieve state-of-the-art prediction performance and

then furthermore introduce the novel idea of transformation-based network embedding (i.e., signed

network mining), and apply signed networks by creating a framework that can infer both link and

interaction polarity levels in online social media and constructing an advanced comprehensive

congressional vote prediction framework built around harnessing signed networks.
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CHAPTER 1

INTRODUCTION

Most existing network analysis has solely focused on unsigned networks (or networks with only

positive links) as shown in Figure 1.1(a). However, in many real-world systems, relations can be

both positive and negative. For instance, social media users not only have positive links such as

friends (e.g., Facebook and Slashdot), followers (e.g., Twitter), and trust (e.g., Epinions), but also

can establish negative links such as foes (e.g., Slashdot), distrust (e.g., Epinions), blocked and

unfriended users (e.g., Facebook and Twitter). These relations can be represented as networks with

both positive and negative links (or signed networks) as shown in Figure 1.1 (b). The introduction

of negative links in signed networks not only increases the complexity of the representation, but also

poses tremendous challenges for traditional unsigned network analysis. It is evident from recent

researches that negative links in signed networks have distinct properties from positive links [1].

Meanwhile, the fundamental principles and theories of signed networks are substantially different

from those of unsigned networks [2, 1]. Hence, signed network analysis cannot be carried out by

simply extending unsigned network analysis. On the other hand, the existence of negative links

also brings about unprecedented opportunities for network analysis. First, negative links have been

proven to have significant added value over positive links in various analytical tasks [3, 4, 5, 6].

Second, analogous to unsigned networks, we can have similar analysis tasks for signed networks;

however, negative links in signed networks make them applicable to a broader range of applications

and tasks [7].

(a) Unsigned network (b) Signed network

Figure 1.1: A visualization of an unsigned and signed network.
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Therefore, in this dissertation, I investigate network analysis with negative links (i.e., signed

network analysis) focusing on each of the four primary directions. In particular, I propose novel

frameworks to tackle the challenges associated with measuring, modeling, mining, and applying

signed networks.

1.1 Research Challenges

While analyzing andmaking predictions in signed networks, we are facedwith several challenges

that must be overcome:

• The first major challenge is that the properties and theories of signed networks deviate from

traditional unsigned networks. In Chapter 2 we perform an initial investigation to analyze

multiple network properties for both positive and negative links, which empirically show

their many differences on a representative set of signed networks. Furthermore, many of

the unsigned network methods are built with classical network theories, but recent work has

shown they might not apply to signed networks. Thus, this leads to needing dedicated efforts

for new ways of constructing signed network analysis methods built in accordance to signed

network specific theories.

• For measuring signed networks, we have the challenge of polarity being introduced. More

specifically, when seeking to define how related two nodes are in a signed network (i.e.,

signed node relevance) we must not only consider the strength of their relationship, but also

whether it is in a positive or negative way. This also requires balancing between situations

such as two users having many common friends while also disagreeing on many other users

(e.g., one user trusts the third parties while the other distrusts them), and the situation of two

users having only a single friend in common, but having no differing opinions on others.

Similarly, for defining a signed node centrality, the polarities of relations pose the specific

challenge of needing to now differ from the “infamous” users who are important for negative

reasons from the “famous” users who are popular for positive reasons.
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• For signed generative networkmodeling themajor challenge is that this domain has never been

explored before to the best of our knowledge. Hence, just as unsigned generative modeling

requires elegant strategies to allow the generation of networksmaintaining network properties

such as a correct degree distribution and the level of local clustering, signed networks require

similar level of finesse. More specifically, while generating a synthetic signed network if

we seek to maintain the correct ratio of positive to negative links this will conflict with

maintaining the correct distribution of balanced to unbalanced triangles due to these signed

triangles requiring to be of a certain form to adhere to the signed network social theory.

Then, when seeking to harness the same social balance theory for bipartite networks new

challenges are introduced for signed bipartite networks. This is due to prior works primarily

using balance theory in the form of triangles, but there are inherently no triangles in bipartite

networks, which thus require investigating other useful network subgraph structures beyond

signed triangles.

• Recently network embedding methods and graph neural networks have shown to provide

significant improvements in a wide range of network analysis tasks, such predicting missing

links in the network or classifying the node type for those missing labels. The first challenge

here is that many methods are based on random walks to build up a context of the local

neighborhood and utilizes contrastive loss in relation to randomly sampled nodes in the

network. In addition, many also make use of aggregating features from surrounding nodes

under the assumption of homophily. However, this will not suffice for signed networks, since

a traditional random walker is not sufficient to differentiate the context from both a positive

and negative perspective, while homophily may also not apply on negative links (as it does

on positive links). Furthermore, the situation becomes even more complex the further the

aggregation distance is from the focal node.

The chief objective of this dissertation is to first analyze the distinct properties of negative

links as compared to positive links and towards improving network analysis with negative links by
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Figure 1.2: An overview of the research contributions presented in this dissertation.

researching the utility and how to harness social theories that have been established in a holistic

view of networks containing both positive and negative links. We discover that simply extending

unsigned network analysis is typically not sufficient and that although the existence of negative links

introduces numerous challenges, they also provide unprecedented opportunities for advancing the

frontier of the network analysis domain. An overview of my dissertation research is summarized

in Figure 1.2.

1.2 Contributions

The contributions of this dissertation can be summarized as follows:

• Wedevelop advancedmethods in signed networks formeasuring node relevance and centrality

(i.e., signed network measuring);

• Presenting the first generative signed network model and extend/analyze balance theory in

signed bipartite networks (i.e., signed network modeling);

• Construct the first signed graph convolutional network and introduce the novel idea of

network transformation based signed network embedding, which both are able to learn node

representations that can achieve state-of-the-art prediction performance on two representative

link-oriented tasks (i.e., signed network mining);

• Applying signed networks by creating a framework that can infer both link and interaction
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polarity levels in online social media, and constructing an advanced comprehensive congres-

sional vote prediction framework built around harnessing signed networks.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce the

preliminaries, including basic definitions, and social theories used in network analysis. In Chapter

3, we introduce multiple signed network node relevance measures and a signed centrality measure

of which all are developed in accordance to signed social theories. Then, in Chapter 4, we introduce

the first proposed generative network model for signed networks and furthermore introduce models

for making predictions in signed bipartite graphs by harnessing structural balance theory through

our novel defined signed butterfly network substructures. Chapter 5 presents our work on mining

signed networks through the development of node level representations that can be used to solve

traditional signed network mining tasks, such as predicting missing signed links and the unknown

polarity of existing links. This is performed by developing the first signed graph convolutional

network and introducing the novel idea of network transformation based embeddings. Chapter 6

presents our work on applying signed network analysis techniques to important interdisciplinary

research in predicting future congressional votes, while also developing a method to help alleviate

the cold-start problem of predicting the polarity of direct and indirect links between users in online

platforms. Finally, Chapter 7 concludes the dissertation and presents promising future research

directions.
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CHAPTER 2

FOUNDATIONS AND PRELIMINARIES

In this section, we briefly introduce basic network definitions and social theories for networks

consisting of only positive links (i.e., unsigned networks), only negative links, and networks

containing both positive and negative links. This provides the groundwork for later introducing our

novel methodologies for measuring, modeling, mining, and applying signed networks in the later

chapters.

2.1 Basic Notations and Definitions

A signed network G is composed of a set of # nodes (i.e., users) U = {D1, D2, . . . , D# }, a set of

positive links E+ and a set of negative links E−. We represent directed signed links between users

in an adjacency matrix, A ∈ R#×# , where A8 9 = 1 if D8 has a positive link to D 9 , −1 if D8 creates

a negative link to D 9 , and 0 when D8 has no link to D 9 . Furthermore, we can separate a signed

network into two networks, one containing only positive links and the other with only negative links,

which we can represent in the adjacency matrices A+ ∈ R#×# and A− ∈ R#×# , respectively. We

represent a positive link from D8 to D 9 with A+
8 9
= 1 and A+

8 9
= 0 otherwise. Similarly, we represent

a negative link from D8 to D 9 with A−
8 9
= 1 and A−

8 9
= 0 otherwise. Note that we can similarly

define an undirected signed network such that there are no directions associated with their signed

links. Therefore, unlike the directed signed links, when D8 and D 9 have a positive (or negative link)

undirected link then A8 9 = A8 9 = 1 (or A8 9 = A8 9 = −1). In other words, an undirected signed

network will have a symmetric adjacency matrix. We furthermore note that A = A+ − A−.

2.2 Unsigned Network Properties and Theories

In networks consisting of only positive links (i.e., unsigned networks, A+) there are a few well

known properties that are quite universally studied, such as the degree distribution, reciprocity,

transitivity, and clustering coefficient, which we define here. Additionally, we introduce the social
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network theory of homophily [8].

2.2.1 Degree Distribution and Network Density

In a network, observing the distribution of node degrees can provide great insight. One of the

first analyses of the degree distribution of a network was done in [9]. They studied a friendship

network among children in a school and noticed that while many children were selected as a friend

by only a few of the other students, there were a few children that had been selected as a friend by

very many other students. This led to later works, such as [10], observing that many real-world

(unsigned) networks have degree distributions that follow a power-law (more specifically in [10]

they studied citation networks). Essentially what many have observed is that for both in- and

out-degrees of positive links in unsigned networks follow power-law distributions – most nodes

have a small degrees while a few nodes have large degrees, and the networks with power-law degree

distributions are commonly called “scale-free” networks [11].

In comparison, the network density is the property that compares the specific connectivity of a

given unsigned network (which is defined by their links E+) to a the maximum number of possible

edges in that network. We note that for an unsigned network having the maximum number of edges

is denoted as a fully-connected network and assuming no self loops (i.e., edges connecting a node

to itself) it has
(#

2
)
= 1

2# (# −1) edges in the undirected setting and # (# −1) edges in the directed

setting. Thus, the density of dD and d3 in the undirected and directed unsigned network setting can

be defined as follows:

dD =
|E+ |(#

2
) = 2|E+ |

# (# − 1) =
| |A+ | |+
# (# − 1) d3 =

|E+ |
2
(#

2
) = |E+ |

# (# − 1) =
| |A+ | |+
# (# − 1) (2.1)

where we assume E+ and A+ are appropriately constructed in the undirected and directed settings

(i.e., A+ is symmetrical in the undirected setting) for the respective definitions of unsigned network

density.
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2.2.2 Network Reciprocity

Links in directed social networks can be generally categorized into reciprocal (two-way) and

parasocial (one-way) links [12]. Reciprocal links among nodes in unsigned networks are usually

treated as the basis to create stable social ties and play an important role in the formation and

evolution of networks [13]. Reciprocity is uniquely defined on directed networks. More specifically,

given a pair of users (D8, D 9 ), we define an edge D8 to D 9 being reciprocated if there also exists a link

from D 9 back to D8. Note that this is the shortest loop in a simple directed network (assuming no

self-loops). An example of a reciprocal link would be if you follow someone on the social media

site Twitter and they also follow you back.

While works such as [14] have examined relationships between in-degrees and out-degrees of

social networks, it was in [15]where it is believed the firstmeasurement of reciprocity appeared [16].

We can more formally define reciprocity A [17] for an directed unsigned network as the percentage

of positive links that are reciprocated as follows:

A =
1
|E+ |

#∑
8=1

#∑
9=8+1

A+8 9A
+
98 =

1
|E+ | Tr

(
(A+)2

)
(2.2)

where Tr(·) is the trace of a matrix. Note that A+
8 9

A+
98
= 1 if and only if there is a reciprocal link

between D8 and D 9 , and A+
8 9

A+
98
= 0 otherwise.

2.2.3 Transitivity and Clustering Coefficient

In an unsigned network transitivity can be explained as “a friend’s friend is a friend”. Thus,

the network only has perfect transitivity if each of the networks components are fully connected.

However, in most real-world unsigned networks this is not going to be true for the entire network.

Thus, we can measure the level of partial transitivity as follows. We first observe the wedges of

the users D8, D: , and D 9 , which are paths of length two, such as the wedge consisting of the edges

D8 friends with D: and D: friends with D 9 . We then consider this specific wedge closed if we also

have D8 friends with D 9 (i.e., forms a triangle). The clustering coefficient (which was first measured

in [18]) is then the fraction of wedges that are closed into triangles. More formally, we define the
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clustering coefficient 2 in an unsigned network as:

2 =
(total number of closed wedges)

(total number of wedges)
=
| |A+ ◦ (A+)2 | |+
| | (A+)2 | |+

(2.3)

where ◦ denotes theHadamard product (i.e., element-wise product) of twomatrices andwe use | | · | |+

to denote the summation of all elements of a matrix. Note that many real-world unsigned networks

observe relatively higher clustering coefficients as compared to random graphs. Furthermore, a

lot of prior work (first starting in [19]) have shown evidence that transitivity and having a higher

clustering coefficient is both common and important in social networks.

2.2.4 Network Homophily

In an unsigned social network homophily can be summarized with the proverb “birds of a feather

flock together” [8]. Coming from roots in sociology [20], it has been applied to social networks and

used to explain the phenomenon that users who are similar are more likely to become friends with

each other. This theory has been used in numerous social network areas, such as explaining the

evolution/growth of networks [21] and in the recently developed graph neural networks [22], which

are a generalization of deep neural networks to graph structured data. More specifically, the latter

utilizes this fact they can aggregate node/user features from their local structural neighborhood

(e.g., a user’s set of friends) to better represent themselves. However, it is not necessarily the case

that the same will apply for negative links.

2.3 Signed Network Datasets, Properties, and Theories

Now, having defined the basic network properties and social theory governing unsigned net-

works, here will investigate and discuss them further in the signed network setting. Furthermore,

we will introduce the two major social theories that have been developed for networks containing

both positive and negative links.

First we introduce a few representative signed network datasets. Then, we present an analysis

for the same set of unsigned network properties on negative links and introduce signed network

social theories that help explain the discovered differences, help motivate the need for dedicated

9



10

Table 2.1: Statistics of four signed social networks.

Network # Users (#) # Positive Edges (|E+ |) # Negative Edges (|E− |)
Bitcoin-Alpha 3,784 22,651 1,556
Bitcoin-OTC 5,901 32,271 3,438
Slashdot 79,116 392,179 123,218
Epinions 131,828 717,667 123,705

signed network analysis efforts, and guidance towards building our novel methodologies presented

in the later chapters.

2.3.1 Signed Network Datasets

For the majority of this dissertation we study four signed network datasets we have collected,

namely Bitcoin-Alpha1, Bitcoin-OTC2, Slashdot3 and Epinions4. Some basic statistics of these

four signed network datasets are demonstrated in Table 4.2. Below we describe more details about

these datasets.

The Bitcoin-Alpha and Bitcoin-OTC networks are signed networks that we collected from

publicly available data from their respectivewebsites5. We note that smaller and less comprehensive

versions of this data had previously been collected in [23]. The two Bitcoin sites are open market

websites that allow users to buy and sell things. Due to the anonymity behind users’ Bitcoin

account, users of these websites form trust networks to prevent against scammers (e.g., fake users

who are just attempting to have another user send them bitcoins, but never deliver their end of

the deal, which is usually the delivery of some other monetary good). In addition to the signed

networks, users in both websites can specify scores in the range [1,10] (or [-10,-1]) to indicate the

positive (or negative) tie strength. Note that negative links in both websites are visible to the public.

The Slashdot dataset was obtained from [24]. Slashdot focuses on providing technology news

1http://www.btcalpha.com
2https://www.bitcoin-otc.com
3http://www.slashdot.org
4http://www.epinions.com
5The Bitcoin-Alpha and Bitcoin-OTC data was exhaustively crawled on December 18th of 2016.
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since 1997. More specifically, the technology stories are written by either editors or submitted by

the users and then other users are allowed to comment on these published stories. In addition to

being an website allowing social connections, it added a novel component allowing users to flag

others with negative sentiment in addition to the more traditional positive only sentiment (e.g.,

friends feature). In more detail, this unique feature was established in 2002 where the website has

since allowed users to explicitly mark other users as their friends (i.e., positive links) or foes (i.e.,

negative links) (i.e., their “Zoo” feature). Note that negative links in Slashdot are only visible to

users who are currently logged into the system (i.e., negative relations are not publicly available,

but require signing up as a member to the site).

In addition, we have collected a dataset from the product review site Epinions where users can

establish trust (i.e., positive) and distrust (i.e., negative) links. In addition, users can write reviews

for items from certain pre-defined categories. Furthermore, users can then rate the “helpfulness”

of those reviews on a scale of 1 to 6 (with a higher score denoting the user found the review

more helpful). While there have been numerous multiple versions of this dataset [25, 2, 26, 27],

we primarily only use the explicitly created trust and distrust links made between users. Later in

Section 6.1 we will utilize these helpfulness ratings (obtained from [27]), but otherwise we only

use the more commonly used basic signed network version from [2]. We note that negative links

in Epinions are totally invisible to the public, but were obtained from Epinions staff for research

purposes in this dataset. However, the helpfulness ratings are publicly available.

2.3.2 Data Analysis on Signed Networks Properties

Now, having defined the basic network properties and social theory governing unsigned networks,

here we investigate and discuss them further in the signed network setting. More specifically, we

perform an initial study of these properties on both the networks consisting of only negative links

(i.e., A−) and also positive links (i.e., A+) from four real-world signed networks (as shown in

Table 4.2). In addition, as previous studies suggested that balance theory is helpful to explain social

phenomena in signed networks [4] and status theory is another influential social theory in signed

11



12

(a) Bitcoin-Alpha (b) Bitcoin-BTC

(c) Epinions (d) Slashdot

Figure 2.1: Degree distributions in signed social networks.

networks [2], we also define and discuss some insights from both of these signed social network

theories.

Degree Distributions: Here, we analyze the undirected degree distributions for the positive

(i.e., E+ and negative (i.e., E−) links. For each user, we calculate and combine the numbers of in-

and out-degrees for both positive and negative links. The distributions of the undirected degrees

for positive and negative links in our four signed networks are demonstrated in Figure 2.1. From

the figure, it is clearly observed that the degree distributions of positive and negative links in all

four signed networks also follow power-law distributions. For instance, a few nodes give a large

number of negative links; while many nodes only give few negative links. Note that this conclusion

can be approximated by observing a linear relationship in the distribution plots when having a

log-log scale. Hence, we can see that positive and negative links indeed empirically have at least

one similar property so far in regards to having a power-law degree distribution.
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Table 2.2: Probability of links being reciprocal in signed social networks.

Datasets Positive Links Negative Links
Bitcoin-Alpha 85.4% 18.0%
Bitcoin-OTC 83.8% 17.8%
Slashdot 30.7% 7.4%
Epinions 34.8% 3.8%

Network Density: From Table 4.2 we can easily observe that the negative links are sparser

than positive links. In other words, the density of the positive links (i.e., defined in Eq. (2.1)) is

significantly larger than that of the negative links (i.e., redefining Eq. (2.1) with E− and A− instead

of E+ and A+), which is obvious from the fact that both the positive and negative linked networks

have the same number of users (i.e., the same denominator in Eq. (2.1 and its negative link variant).

Thus, we can already start to notice that negative links are having different global behaviors from

positive links.

Reciprocal Links: For a pair of users (D8, D 9 ), there are four types of reciprocal links –

(D8 + D 9 , D 9 + D8), (D8 + D 9 , D 9 − D8), (D8 − D 9 , D 9 − D8) and (D8 − D 9 , D 9 + D8), where D8 + D 9 (or

D8 − D 9 ) denotes that there is a positive link (or a negative link) from D8 to D 9 . We checked our four

signed networks and found that among four types of reciprocal links, there are few (D8 +D 9 , D 9 −D8)

and (D8 − D 9 , D 9 + D8). Therefore, our analysis on reciprocal links focuses on (D8 + D 9 , D 9 + D8) and

(D8 − D 9 , D 9 − D8). We calculate if D8 has a positive link (or a negative link) to D 9 , how likely D 9

also has a positive link (or a negative link) to D8. The results on four signed networks are shown in

Table 2.2.

From the table, we first make the observation that the percent of reciprocal positive links is much

higher than that of reciprocal negative links in all four signed social networks. Next, we notice that

in all four websites, positive links are always visible to the public, the percent of reciprocal positive

links in Bitcoin-Alpha and Bitcoin-OTC is much higher than that in Slashdot and Epinions. Users

in Bitcoin Alpha and OTC exchange bitcoins with others; while users share free content (news or
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Table 2.3: Tie strengths of positive and negative links in signed social networks.

Bitcoin-Alpha Bitcoin-OTC
Avg. Strength # Links Avg. Strength # Links

Overall Link
Tie Strengths

Positive 1.998 22,651 1.968 32,271
Negative -6.319 1,556 -7.538 3,438

Non-reciprocal
Tie Strengths

Positive 2.225 3,054 2.215 4,868
Negative -6.120 1,029 -7.540 2,467

Positive Reciprocal
Tie Strengths

(ui uj , D 9 + D8) 1.955 19,350 1.915 27,044
(ui uj , D 9 − D8) 2.611 247 2.571 359

Negative Reciprocal
Tie Strengths

(ui− uj , D 9 − D8) -7.079 280 -7.920 612
(ui− uj , D 9 + D8) -6.291 247 -6.875 359

reviews) with others in Slashdot and Epinions. Thus, Bitcoin Alpha and OTC users need much

stronger social ties for bitcoin trading in the online worlds than users in Slashdot and Epinions

to consume online free content. Finally, we note that the percent of reciprocal negative links

in Bitcoin-Alpha and Bitcoin-OTC is much higher than that in Slashdot, where the percent of

reciprocal negative links in Slashdot is much higher than that in Epinions. Four websites have

different access controls to negative links. In Bitcoin Alpha and OTC, negative links are totally

visible to the public; only users who login to the Slashdot can see negative links; while negative

links are totally private in Epinions. Exposing negative links may cause revenges that consequently

could lead to more reciprocal negative relations [28].

Furthermore, since the Bitcoin-Alpha and Bitcoin-OTC are weighted signed networks, we also

investigate if there are any differences/similarities between positive and negative when it comes

to the strength of the ties. More specifically, we first calculated the average positive and negative

link strengths, which are reported in Table 2.3. The first observation is that the magnitude of

negative links is significantly higher than that of positive links in both datasets. One interpretation

of this could be that users are conservative in their judgement of others they have done successful

transactions with, but are very aggressive in their judgement of other users when having a negative

experience. We can also notice the ranking of tie strength magnitude between: (i) non-reciprocal

links, (ii) reciprocal links with the same sign, and (iii) reciprocal links with opposing signs. For
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positive links in both datasets we have the largest magnitude is (iii), followed by (i) and (ii). In

comparison, for negative links in both datasets (ii) is the largest, but then for Bitcoin-Alpha we have

(iii) followed by (i) and Bitcoin-OTC we have (i) followed by (iii). It is interested that the strongest

negative links are those where the two users both have expressed a negative sentiment towards each

other by creating a reciprocal negative link However, for positive links, the largest magnitude is

coming from positive links that are reciprocated by a negative link, which is somehow unintuitive.

In summary, there are more differences than commonalities for positive and negative links when it

comes to the tie strengths in signed networks.

2.3.3 Signed Network Theories

In this section, we will define and introduce the two most influential signed network theories,

namely that of balance and status. This will then help motivate the need for dedicated signed

network analysis efforts beyond the differences in network properties previously discussed.

2.3.3.1 Balance Theory in Signed Networks

It was in [29] that balance theory was first developed at the individual level with the general notion

that “the friend of my friend is my friend" and “the enemy of my enemy is my friend". Then, later

in [30] structural balance theory was introduced at the group level with a network perspective. A

signed network is defined as being balanced if and only if all the cycles in the network contain an

even number of negative links. It had been proved in [31] that a signed network is balanced if and

only if the nodes can be partitioned into two mutually exclusive subsets such that all links within

the subsets are positive, while the links having an endpoint in each of the two subsets should be

negative. However, it is rare to have real-world signed networks that are completely balanced.

There have been multiple methods to measure the level of balance in a signed network. It

was in [32] and [33] that the ratio of balanced to unbalanced cycles were used to calculate the

level of balance of a signed network. Later methods were then developed, such as in [34] where

they performed a clustering of the signed network and then analyzed the number of postive links
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Figure 2.2: Visualizing balance theory in the form of signed triangles.

between clusters and negative links within clusters. This led to other methods similarly defined

using clusterings [35, 36]. In addition, in [37] a signed spectral theory approach was taken. It

should also be noted that it was in [34] where the notion of weak structural balance came, which

based on the clustering ignores the assumption that “the enemy of my enemy is my friend” is a

balanced relation. In other words, weak structral balance does not concern whether the enemy of

my enemy is either my friend or my enemy, and thus only takes into consideration that a friend of

a friend should be a friend as compared to an enemy.

However, it is still common to use the definition based on the ratio of triangles (even though it

is less computationally efficient taking $ (#3) when utilizing matrix operations on the adjacency

matrix). In regards to analyzing the level of balance in our signed networks we first adopt B8 9 to

denote the link sign between two users D8 and D 9 where B8 9 = 1 (or B8 9 = −1) if the positive (or

negative) link between D8 and D 9 . As previously methods, and given that typically we focus on

triads (or 3-cycles) [4], a triad of three users (D8, D 9 , D: ) is balanced if B8: = 1 and B 9 : = 1, then

B8: = 1; or B8 9 = 1 and B 9 : = −1, then B8: = −1. Therefore, for a triad, there are four possible sign

combinations: (a) (+, +, +); (b) (+,−,−); (c) (+, +,−); and (d) (−,−,−), while only (a) and (b) are

balanced. We visualize these four signed triangle combinations in Figure 2.2.

Note that balance theory is only applicable to undirected signed network, and thus we perform

some basic preprocessing to ignore the link directions when applying it to directed signed networks

following the discussions in [4]. More specifically, in our specific mapping from a directed to undi-
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rected signed network we count each of the four sign combinations and find that 92.0%, 91.5%,

94.5% and 92.4% of triads in Bitcoin-Alpha, Bitcoin-OTC, Slashdot and Epinions are balanced,

respectively. This is in line with prior works measuring the level of balance in signed networks and

it has also been shown that the ratio of balance to unbalance triangles increases over time [28].

2.3.3.2 Status Theory in Signed Networks

Based on some of the observations found in [3] status theory was later developed in [2]. Unlike

balance theory, which is defined in an undirected signed network based on users liking or disliking

(i.e., positive or negative links), status theory takes a separate perspective in directed signed

networks. Rather than assuming a positive link from D8 to D 9 implies that D 9 is a friend of D8, it

considers that perhaps D8 instead thinks that D 9 has a higher status. Similarly, a negative link from

D8 to D 9 might not imply that D8 dislikes D 9 , but perhaps D8 just believes that D 9 is of a lower status in

the network. Thus, from a triangle perspective, status theory is based on the concept of consistency

in the logical deductions of the directed relations. We note that directed signed triangles can take

12 different forms, where 4 are cyclic and 8 are acyclic.

Determining if a triangle adhere to status theory can be done by the following three steps: 1)

first flip negative links to positive and reverse their direction; and 2) if the triangle is acyclic, then

it adheres to status theory. For example, if we have the cyclic signed triangle consisting of the

three positive links D8
+−→ D: , D:

+−→ D 9 , and D 9
+−→ D8, then based on status theory these three links

respectively imply that D8 believes that D: has a higher status then them (i.e., D8 < D: ), D: believes

that D 9 has a higher status than them (i.e., D 9 > D: ), and D 9 believes that D8 has a higher status than

them (i.e., D8 > D 9 ). However, we then from the first two links we have that D8 < D: < D 9 , but then

the third link with D 9 thinking that D8 > D 9 creates a contradiction. We note that prior works have

shown that many real-world signed networks have the majority (and almost all) triangles adhering

to status theory quite similar to balance theory [2]. It can be calculated that when converting

directed signed network triangles to undirected signed network triangles that only 6 agree between
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the theories of balance and status while the other 6 are in disagreement. For example, our prior

example of the cyclic signed triangle of three positive links does not adhere to status theory, but

aligns with triangle (a) from Figure 2.2 and thus adheres to balance theory.
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CHAPTER 3

MEASURING NETWORKS WITH NEGATIVE LINKS

In this chapter1, we investigate network measurements for networks having negative links. A

network metric is a mathematical expression that allows the expression of information contained in

a network to be output in numerical form. It is then via these metrics that we can define network

measurements through the use of algorithms and/or mathematical formula that can be used to

compare and/or rank users, pairs of users, subgroups (i.e., communities), or entire networks.

Node relevance, which measures how relevant two nodes are in a social network, is one of the

keystones of social network analysis. This has been shown by their usage in diverse social network

analysis tasks and applications such as link prediction [38, 39], node classification [40], community

detection [41], search and recommendations [42]. The vast majority of existing node relevance

measurements have been designed for unsigned networks (or social networks with only positive

links) [11, 43]. We note that these measurements can be divided into local and global measurements

according to the information used – local measurements only use local neighborhood information

such as common neighbors; while global measurements utilize the whole structural information of

the network such as RandomWalk with Restart [44]. Thus, in Section 3.1, we present our proposed

node relevance measures for signed networks and discuss their relationship to balance theory.

Node centrality is a fundamental network measurement that has a diverse set of applica-

tions [45, 46, 47, 48, 49] across many domains, such as economics [45], biology [46], and urban

infrastructure [47, 48] to sociology, which the later has a plethora of applications [49]. In general,

the task is to construct a ranking of nodes based on how “central” or “important” they are in the

network. Most of the previous work has been for unsigned networks. Due to the inclusion of

negative links, existing unsigned centrality measures are not directly applicable to signed networks.

1Tyler Derr, Chenxing Wang, Suhang Wang, and Jiliang Tang. “Relevance Measurements in
Online Signed Social Networks.” KDD 14th International Workshop on Mining and Learning with
Graphs (MLG), 2018.
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This is partially due to the added complexities associated with the introduction of negative links

and also because we now need to differentiate between the “famous” and “infamous” users in a

signed network. Though recently there have been some measurements proposed that take into

account negative links by extending existing unsigned centrality measurements [24, 50, 51], they

have not explored the use of exploiting higher-order network information in signed networks. Thus,

in Section 3.2, we develop a signed centrality measurement built upon both prominent triadic social

theories defined on networks having both positive and negative links, namely the status and balance

theories.

3.1 Node Relevance Measurements in Signed Networks

It is evident from recent research that negative links have significant added value over positive

links in various analytical tasks. For example, even a small number of negative links can significantly

boost the performance of positive link prediction [3, 4], and can similarly improve recommender

systems [5, 6]. Thereby, negative links could offer the potential to help us develop novel relevance

measurements for signed networks. There are a few very recent works in designing node similarities

for link prediction [52, 53]. However, a general and systematic investigation on signed relevance

measurements and their effects on signed network analysis had previously not been explored. Hence,

we perform the initial and comprehensive study on the problem of measuring node relevance in

signed social networks. Analogous to node relevance research in unsigned networks, we aim to

investigate the following: (a) how tomake use of both positive and negative links in signed relevance

measurements; and (b) what are the effects of these measurements on two signed network mining

tasks of sign prediction and signed tie strength prediction.

Data Analysis Discussions: Social theories such as homophily [8] play an important role

in building node relevance measurements for unsigned social networks [54]. This stimulates the

investigation for one of the most fundamental social theories related to signed social networks, i.e.,

balance theory [30], that could be helpful in building node relevance measurements in signed social

networks.
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Table 3.1: Notations regarding node relevance in signed networks.

Notations Descriptions
A Adjacency matrix
A+(A−) Adjacency matrix of only positive(negative) links
|A| Absolute adjacency matrix
R Node relevance matrix
38 Degree of node D8
38=
8
(3>DC
8

) Indegree (Outdegree) of node D8
38=+
8
(3>DC+
8
) Indegree (Outdegree) of positive links of node D8

38=−
8
(3>DC−
8
) Indegree (Outdegree) of negative links of node D8

#8 Set of neighbors for node D8
#8=
8
(#>DC
8
) Set of incoming (outgoing) neighbors for node D8

#+
8
(#−
8
) Set of positive (negative) neighbors for node D8

X8 9 the (i,j) entry of the matrix X

Based on the analysis performed in Chapter 2.3, properties of negative links are different from

positive links, which makes signed social networks be distinct from unsigned social networks.

Therefore, though node relevance measurements have been extensively studied, it still needs dedi-

cated efforts to systematically investigate signed relevance measurements. Furthermore, as most of

the triads in signed social networks satisfy balance theory, we can use this to guide building novel

signed relevance measurements.

Node relevance measurements have been extensively studied in unsigned networks. According

to our preliminary data analysis, the availability of negative links makes signed networks unique

in many aspects such as properties and balance theory. In this section, analogous to unsigned

networks, we develop node relevance measurements for signed networks.

Notations and Definitions: We use R ∈ R#×# to denote the relevance score matrix, where

R8 9 represents the node relevance from user D8 to user D 9 . Note that node relevance values are not

necessarily symmetrical. We summarize the above notations in Table 3.1 where 38 and #8 denote

degree and the set of neighbors of D8 in an unsigned network.

Many node relevance measurements have been proposed for unsigned networks. According

to the used information, we can roughly divide them to local and global measurements. Local
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measurements only use local neighborhood information such as common neighbors; while global

measurements utilize the whole structural information such as Random Walk with Restart. Mean-

while, node relevance measurements can be undirected and directed, corresponding to undirected

and directed networks. Note that we could use any method that requires a directed network for an

undirected network, since undirected networks are simply directed networks where each edge has

both directions. In this work, we will group signed relevance measurements as local and global

methods.

With node relevance measurements for unsigned networks, there are three strategies to design

signed ones. The first is to only use A+ in the calculation of node relevance scores. This strategy

completely ignores the negative links that could result in over-estimation of the impact of positive

links [55]. The second strategy would be to convert negative links in the signed network into

positive links, thus making the signed network into an unsigned network. Such a network can be

represented by the matrix Ã where Ã8 9 = |A8 9 |. Ignoring signs of links not only overlooks the

differences between negative and positive links; but also makes balance theory for signed networks

not applicable. Our third strategy is to take advantage of negative links and balance theory to

develop signed relevance measurements based on unsigned ones. In the following subsections, we

will detail how to apply the third strategy to representative unsigned node relevance measurements.

3.1.1 Local Methods

In this subsection, we build local signed relevance measurements based on representative local

methods for unsigned networks including common neighbors, Jaccard Index, and Preferential

Attachment [56, 17]. For each unsigned measurement, we will first briefly introduce it, then detail

how to design the signed one and finally discuss its connection with signed network properties and

balance theory.
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3.1.1.1 Common Neighbors

Unsigned Common neighbors (UCN): If two nodes share a lot of common friends, they are likely

to be relevant. Based on this intuition, UCN defines the relevance score between D8 and D 9 as the

number of common neighbors, which is formally defined as:

R8 9 = |#8 ∩ # 9 | (3.1)

where |G | denotes the size of the set G.

Signed Common neighbors (SCN): UCN cannot be directly extended to include negative

links. Therefore, we define SCN as follows:

R8 9 = ( |#+8 ∩ #
+
9 | + |#

−
8 ∩ #

−
9 |) − (|#

+
8 ∩ #

−
9 | + |#

−
8 ∩ #

+
9 |)

We can interpret SCN as number of common neighbors of D8 and D 9 where they agree on the

polarity of the sign (|#+
8
∩ #+

9
| + |#−

8
∩ #−

9
|) and then subtracting the number of neighbors that

they disagree on the sign (|#+
8
∩ #−

9
| + |#−

8
∩ #+

9
|).

Connection to Balance Theory: If D8 and D 9 agree with the majority of the signs of their

neighbors, i.e., ( |#+
8
∩ #+

9
| + |#−

8
∩ #−

9
|) > ( |#+

8
∩ #−

9
| + |#−

8
∩ #+

9
|), then R8 9 is positive which

will lead to more balanced triads. Otherwise, they have more disagreements on the signs, i.e.,

( |#+
8
∩ #−

9
| + |#−

8
∩ #+

9
|) > ( |#+

8
∩ #+

9
| + |#−

8
∩ #−

9
|), then R8 9 is negative, which will also result

in more balanced triads. Therefore, SCN aims to force more triads with D8 and D 9 to be balanced.

3.1.1.2 Jaccard Index

Unsigned Jaccard Index (UJI): UCN only considers the number of common neighbors of D8 and

D 9 , but it ignores the number of unique neighbors these two users have. Therefore, UCN is likely

to give users with large numbers of neighbors high relevance scores. To mitigate such effect, UJI

penalizes the UCN scores by the number of unique neighbors two users have as:

R8 9 =
|#8 ∩ # 9 |
|#8 ∪ # 9 |

(3.2)
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Signed Jaccard Index (SJI): Similar to from UCN to UJI, SJI is defined as SCN divided by

the total number of unique neighbors D8 and D 9 have:

R8 9 =
(�#8 9

|#+
8
∪ #−

8
∪ #+

9
∪ #−

9
| (3.3)

Connection to Balance Theory: Similar to SCN, SJI targets to force more triads balanced.

3.1.1.3 Preferential Attachment

UnsignedPreferentialAttachment (UPA): One commonly used interpretation behind thismethod,

taken from the finance realm, is that the rich gets richer. In terms of social network analysis, users

that already have many friends are more likely to create new friends in the future. Therefore, the

node relevance score of UPA is to multiply the degrees of the two users [11].

R8 9 = 38 × 3 9 (3.4)

Signed Preferential Attachment (SPA): In the Section 2.3.2, we demonstrate that both positive

and negative links follow the power-law distributions. In other words, we observe “the rich getting

richer” for both positive and negative links, which paves us a way to define SPA. We first split the

network from A to a positive network A+ and a negative network A−. Then we can use UPA to

calculate relevance scores from the positive and negative networks, separately, since degrees in both

networks follow power-law distributions. The relevance score for 8 and 9 from A+ is denoted as

*%�+
8 9
and similarly we denote the relevance as*%�−

8 9
from A−. *%�+

8 9
and*%�−

8 9
are computed

as:

*%�+8 9 = 3
+
8 × 3

+
9 , *%�−8 9 = 3

−
8 × 3

−
9

Then we define SPA between D8 and D 9 as:

R8 9 = B86=(*%�+8 9 −*%�
−
8 9 ) 5 (*%�

+
8 9 ,*%�

−
8 9 ) (3.5)

where B86=(G) = 1, 0, or -1 if G is larger, equal or smaller than 0. Intuitively, if the positive

relevance score *%�+
8 9
is larger than the negative one *%�−

8 9
, the overall R8 9 should be positive;
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otherwise, R8 9 should be negative. Therefore the sign of R8 9 is decided by B86=(*%�+8 9 −*%�
−
8 9
).

The relevance strength |R8 9 | is to aggregate*%�+8 9 and*%�
−
8 9
via a function 5 . A straightforward

way is to set 5 (*%�+
8 9
,*%�−

8 9
) = |*%�+

8 9
−*%�−

8 9
|. It may not work well. For example, when D8

and D 9 have both larger positive and negative degrees, positive and negative relevance scores will

cancel each other, which contradicts with “ the rich getting richer". Actually we empirically find

that 5 (*%�+
8 9
,*%�−

8 9
) = max(*%�+

8 9
,*%�−

8 9
) works better than 5 (*%�+

8 9
,*%�−

8 9
) = |*%�+

8 9
−

*%�−
8 9
|.

Connection to the signed network property: According to the power-law distributions of positive

and negative links, we design SPA, which will allow users with higher degrees to have higher

relevance scores with others.

3.1.2 Global Methods

The global methodsmake use of not only the local neighborhoods, but also allow for the propagation

of relevance information to pass through the whole network. Most of the global methods for

unsigned networks assume that two users D8 and D 9 should have high relevance if they have

neighbors with high relevance. In this subsection, we detail how to design global signed relevance

measurements based on representative unsigned ones and then connect them to balance theory.

3.1.2.1 Katz

Unsigned Katz (UK) : This method sums over the collection of all paths from 8 to 9 and has an

exponential decay on the weight associated with the count of paths as the length increases [57]:

R8 9 =
∞∑
;=1

V; · |paths;8, 9 | =
∞∑
;=1

V;A; (3.6)

where |paths;
8, 9
| is the count of paths of length ; from 8 to 9 . Note that we should have V < 1 so that

longer paths will be assigned less weight than shorter paths. This can be formulated recursively as
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follows to handle the counting of the paths of varying length:

R8 9 =
V

3G

#∑
:=1

A8:R: 9 + X8 9 (3.7)

Note that X8 9 is used to ensure that every node in the network has a high relevance to themselves

(i.e., “self-similarity”). It is a diagonal term and is defined as X = I. It normalizes the relevance

scores from each user D8 based on the degree 38.

Signed Katz (SK): Balance theory states that a k-cycle in a signed social network is balanced

if it contains an even number of negative edges and unbalanced if it contains an odd number of

negative edges. With relevance scores from SK, we expect more balanced k-cycles than unbalanced

ones involving users 8 and 9 . To achieve this, we would therefore need to choose the sign of the node

relevance R8 9 to be either positive or negative, such that it optimizes over all the cycles involving 8

and 9 (i.e., all the paths between 8 and 9). As done in UK, we also can similarly allow the decay of

importance on the longer paths. Our formulation and its recurrence relation for the calculation of

paths of length ; having an even or odd number of negative edges is defined as follows:

R =

W∑
;=1

V; 5 (B; ,U;) (3.8)

with

B; = B;−1A+ + U;−1A−

U; = B;−1A− + U;−1A+

B1 = A+, U1 = A−

where 5 (B; ,U;) is a function to combine the counts of paths with even and odd number of negative

links. B; and U; are the matrices that hold the number of paths with an even and odd number of

negative links in paths of length ;, respectively. Next we will discuss the inner working of SK.

When counting paths of length 1 (i.e., a direct edge connecting the two nodes), we set B1 as A+

since having a positive edge is trivially having an even number of negative links in a path of length

1, and similarly reasoned for initializing A−. We assume that B;−1 and U;−1 represent the paths
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of length ; − 1 having an even and odd number of negative edges, respectively, between all pairs

of nodes. Adding one positive link (A+) to a path in B;−1 or adding a negative link (A− ) to a

path in U;−1 will result in a path of length ; with an even number of negative links. This intuition

leads to the update rule of B; = B;−1A+ + U;−1A−. Similarly, we can obtain the update rule of

U; = B;−1A− + U;−1A+.

Theorem 1. When we choose 5 (B; ,U;) = (B; − U;) and A ∈ R#×# , where A8 9 = 1 if D8 has a

positive link to D 9 , −1 if D8 creates a negative link to D 9 , and 0 when D8 has no link to D 9 , signed Katz

in Eq (3.8) is equivalent to applying unsigned Katz in Eq (3.6) on the signed network adjacency

matrix defined as A.

Proof. To prove the theorem, we only need to show that: B; − U; = A; . We use mathematical

induction as:

Basis: Let ; = 1, based on our definition of B1 and U1, we have (B1 −U1) = (A+ −A−) = A = A; .

Inductive Hypothesis: Suppose the theorem holds for ; = : . In other words, (B: − U: ) = A: .

Inductive Step: Let ; = : + 1. Then our left size is (B:+1 −U:+1) =
(
(B:A+ +U:A−) − (B:A− +

U:A+)
)
= (B: − U: ) (A+ − A−) = A: (A) = A:+1, which completes the proof. �

Connection to Balance Theory: SK is built based on balance theory. SCN and SJI forces more

balanced triads (or 3-cycles), while SK pushes more for any ;-circles to be balanced. If the majority

of paths between 8 and 9 have an even number of negative links, according to balance theory, we

should have a positive node relevance between them. Similarly, when having an odd number of

negative edges, we want to have a negative relevance. Therefore, if we count the number of paths

between 8 and 9 with an even or odd number of negative edges, then we can subtract the number with

an odd number of negative links from the number of paths having an even number of links, since

this will give us the optimal choice of sign between 8 and 9 as mentioned above. More specifically,

if the resulting value is positive, the node relevance between 8 and 9 is positive, otherwise negative.
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3.1.2.2 Asymmetric Similarity Measure for Weighted Networks

UnsignedAsymmetric SimilarityMeasure forWeightedNetworks (UASCOS++): Thismethod

is an enrichment of the ASCOS [58] to handle weighted networks. The formulation of ASCOS is

the following:

R8 9 =


2

|#8=
8
|

∑
:∈#8=

8

R: 9 8 ≠ 9

1 8 = 9

Let P8 9 =
A8 9
38=
8

and we can rewrite the formulation as:

R = 2P>R + (1 − 2)I

It defines the node relevance as the summation of normalized relevance from the incoming

neighbors of 8 to 9 . The modifications for ASCOS++ were performed to handle weights on the

edges. The formulation is shown below:

R8 9 =


2

∑
:∈#8=

8

A8:∑
@∈#8=

8

A8@
(1 − 4−�8: )R: 9 8 ≠ 9

1 8 = 9

(3.9)

The adjustment is that they now normalize each of the edge weights coming into 8 by the summation

of all the incoming weights into 8. The term (1 − 4−�8: ) maps the weights to be close to 1 when

edge weights are large, and when the weights are small, it maps them close to 0.

Signed ASCOS++ (SASCOS++): ASCOS++ has difficulties to directly adapt to signed net-

works. Assume that a node 8 has an even number of incoming edges, where half the edges are

positive, while the other half are negative. Therefore, this would lead to an undefined value as the

summation over all incoming edges to 8
∑

@∈#8=
8

A8@ is zero.

Another issue is if we directly apply ASCOS++, the resulting relevance score could contradict

with balance theory. To ease our analysis in the following case, let ^ =
∑

@∈#8=
8

A8@, _ =
A8:
^ and

` = (1− 4−�8: ). If A8: = 1 and ^ is negative, hence _ is negative and ` is positive. Thus, if R: 9 is
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also positive, then the product of these three terms R8 9 is negative and the resulting triad (+, +, −)

does not follow balance theory. Similarity, when R: 9 is negative, the product is positive and the

resulting triad (+,−,+) is also not balanced.

Due to the fact using ASCOS++ with signed networks, could inherently disagree with balance

theory, which motivates us to build SASCOS++. We note that when using ASCOS++ with signed

networks, ` is equal to approximately 0.63 and -1.72 when A8: is positive or negative, respectively.

Thus, it is providing a stronger push in the similarity (by about three times) when seeing a negative

link. Due to the imbalance of the numbers of positive and negative links in signed networks, we

leave this ` term as is, but make a change to the normalization (i.e., ^). The formulation for

SASCOS++ is shown below:

R8 9 =


2

∑
:∈#8=

8

A8:∑
@∈#8=

8

|A8@ |
(1 − 4−�8: )R: 9 8 ≠ 9

1 8 = 9

(3.10)

Connection to Balance Theory: It is easy to verify that SASCOS++ is able to have the relevance

measurements aligning with balance theory. In other words, it will push more balanced triads.

3.1.2.3 RandomWalk with Restart

Unsigned Random Walk with Restart (URWR): A random walker starting on node 8 that has a

probability of (1 − 2) to return to 8 and with probability 2 chooses a neighbor of the current node

to move to based on a transition matrix W (where W8 9 is the probability that the walker starting

at 8 will end at node 9). We define this transition matrix as W8 9 =
1
38

if 8 and 9 are connected and

W8 9 = 0 otherwise (i.e., no link between 8 and 9). With the intuition, URWR is formulated as [44]:

R = 2WR + (1 − 2)I = (1 − 2) (I − 2W>)−1 (3.11)

Signed RandomWalk with Restart (SRWR): The transition matrixW has to be non-negative,

thus we cannot directly apply URWR to signed networks. Therefore, we study signed random walk

29



30

with restart. Based on balance theory, the relevance score of D: w.r.t D8 can be useful to infer that

of D 9 to D8 if there’s a link from D: to D 9 . For example, if A: 9 > 0 (or D: and D 9 are friends), and

R8: > 0 (or D8 and D: are likely to be friends), it may suggest that D8 and D 9 are friends (or R8 9 > 0)

because friends’ friends are friends. On the contrary, if A: 9 < 0 (or D: and D 9 are enemies) but

R8: > 0 (or D8 and D: are likely to be friends), it may indicate that D8 and D 9 are enemies (or

R8 9 < 0) because friends’ enemies are enemies, which is implied from “the enemy of my enemy

is my friend". This indicates that (1) D 9 ’s relevance score to D8 can be indicated by these of nodes

(e.g., D: ) that have links to D 9 ; and (2) the estimation also depends on the signs of links from D: to

D 9 and the relevance scores from D8 to D: . These intuitions suggested by balance theory pave us a

way to build SRWR. Let D̄ be a diagonal matrix with its diagonal element D̄88 =
∑
: |A8: |. In this

way, D̄88 is the out degree of D8 considering both positive and negative links. Thus, the normalized

weight of the link from D8 to D: is given as

W̄8: =
|A8: |
D̄88

According to aforementioned intuitions, R8: can be used to estimate R8 9 with A: 9 ≠ 0.

Intuitively the portion of relevance score of D: contributes to R8 9 should be weighted by W̄8 9 . This

is to account for the number of neighbors of D: . If D̄88 is large, then W̄8 9 is small and the effects of

D8 to each of its neighbor is small. Thus, R8 9 can be estimated as:

R8 9 ∝
∑
:

B86=(A: 9 )W̄: 9R8: (3.12)

where B86=(A: 9 ) is used to encode the impact of the sign of the links. With sign introduced

in the estimation of R8 9 , the relevance score can be both positive and negative. Two users with

negative links can affect each other with negative relevance scores and thus can capture the semantic

meanings of signed links.

With the analysis above, we are ready to discuss the details of SRWR.We focus on the relevance

score of D 9 , 9 = 1, . . . , =, 9 ≠ 8 w.r.t D8 since the relevance scores w.r.t other nodes can be derived

similarly. Firstly, R8 9 , 9 = 1, . . . , =, 9 ≠ 8, are initialized to 0, which means that the relevance

scores of D 9 to D8 is unknown; while R88 is initialized to 1 because D8 should be positively relevant
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to itself. Now considering that a random walker starting from D8. It can iteratively transmit to its

neighborhood through positive and negative outgoing links. Each time the walker arrives at a node

D 9 , it will update R8 9 by the relevance scores of nodes that have links to D 9 . If the random walker

arrives at D8, then R88 is updated as

R88 ← 2
∑
:

B86=(A:8)W̄:8R8: + (1 − 2) ∗ 1 (3.13)

where the first term of the right-hand side of Eq.(3.13) is the relevance score estimated from

neighborhood, and the second term is to make sure that R88 > 0, i.e., D8 is relevant to itself. 2 is a

scalar between 0 and 1, which is used to control the contribution of the two parts. If the random

walker arrives at D 9 , 9 ≠ 8, R8 9 is updated as

R8 9 ← 2
∑
:

B86=(A: 9 )W̄: 9R8: (3.14)

Combining Eq.(3.12) and Eq.(3.13) together, R8 9 is updated as

R8 9 ← 2
∑
:

B86=(A: 9 )W̄: 9R8: + (1 − 2)I(8, 9)

where I(8, 9) is a binary indicator function with I(8, 9) = 1 if 8 = 9 and 0 otherwise. The random

walker keeps moving until R doesn’t change, which gives

R8 9 = 2
∑
:

B86=(A: 9 )W̄: 9R8: + (1 − 2)I(8, 9) (3.15)

By noticing that B86=(A: 9 )W̄: 9 =
A: 9
D̄::

, we define S = D̄−1A and then Eq.(3.15) can be written

in matrix form with R = 2RS + (1 − 2)I where I is the identity matrix. The solution to the above

equation is given as

R = (1 − 2) (I − 2S)−1 (3.16)

Correctness: Here we show that SRWR is correct, i.e., (I − 2S)−1 exists. The existence of

(I − 2S)−1 can be proofed using the following lemma, which is known as Levy-Desplanques

theorem [59]. The Levy-Desplanques theorem is stated as follows
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Figure 3.1: Triplets encountered during signed random walk.

Lemma 1. Let P ∈ R=×= be a square matrix.If |P88 | >
∑
9≠8 |P8 9 | for all 8 = 1, . . . , =, then P is

nonsingular.

Based on the above lemma, we have

Theorem 2. I − 2S, 0 < 2 < 1, is non-singular.

Proof. Let P = I − 2S. Since S88 = 0, we have P88 = 1. Also,
∑
9≠8 |S8 9 | is given as∑

9≠8

|S8 9 | =
∑
9

|S8 9 | =
∑
9

|A8 9 |
D̄88

=

∑
9 |A8 9 |
D̄88

= 1. (3.17)

which leads to
∑
9≠8 |P8 9 | = 2

∑
9≠8 |S8 9 | = 2. Then we have |P88 | >

∑
9≠8 |P8 9 | for all 8 = 1, . . . , =.

Thus, I − 2S is non-singular and (I − 2S)−1 exists. �

Connection to balance theory: Figure 3.1 gives representative triplets that will happen during

the update process. The solid line with +/- means positive/negative links. The dashed line with +/-

means R8 9 > 0/R8 9 < 0. According to the social balance theory [49], the resulting triads in Figures

3.1(a), 3.1(d) and 3.1(e) are balanced while the remaining three are unbalanced. Next we show

that SRWR is likely to keep the balanced structures while reducing unbalanced structures during

the updating process. For example, in Figure 3.1(a), R8:S: 9 > 0 will be added to R8 9 according to

Eq. (3.14), which increases the positive relevance scoreR8 9 . However, in Figure 3.1(b), R8:S: 9 < 0

will be added to R8 9 that reduces the positive relevance score R8 9 > 0. R8 9 will be consistently

reduced until R8 9 becomes negative (or the triad becomes balanced). Following a similar process,

we can give similar observations for other triads. Thus, SRWR actually tends to learn relevance

scores that increase the structural balance of a given signed network.
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3.1.3 Experiments

In this section, we investigate the impact of signed relevance measurements on two signed network

analysis tasks, i.e., sign prediction and tie strength prediction. We aim to answer the following

two questions. As mentioned in the last section, we can have three strategies to adapt unsigned

measurements for signed networks – (1) removing negative links; (2) ignoring signs; and (3)

building advanced signed versions based on signed network properties and balance theory. Note

that in the following subsections, given an unsigned measurement “X”, we use “X-R" and “X-I" to

denote the corresponding measurements applicable to signed networks by removing negative links

and ignoring signs, respectively. For example, “UCN-R" and “UCN-I” denote the strategies of

adapting “UCN” to signed networks by removing negative links and ignoring signs, separately. The

first question we want to answer is – which strategy leads to better measurements. We have built

numerous local and global measurements. The second question is – how they perform in different

tasks.

For each of the parameterized measurements, we performed cross validation for the parameter

tuning for each of the tasks. Among measurements discussed in the last section, common neighbor

(CN), Jaccard Index (JI), and Preferential Attachment (PA)based measurements are designed for

undirected networks; while ASCOS and RWR are for directed networks. As mentioned before

directed measurements can be naturally applied to undirected ones by considering one undirected

link as two directed links. Therefore, we conduct experiments with both undirected and directed

settings.

3.1.3.1 Sign Prediction

The problem of sign prediction in signed networks is to predict whether an unlabeled links is

positive or negative given knowledge of other link signs in the signed network. A previous study

in unsigned networks suggested that good node relevance measurements generally are good for

the prediction of links [60]. Therefore, the sign prediction performance can reflect the quality of

relevance measurements.
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Table 3.2: Performance comparison of link prediction under the undirected setting.

Metrics Bitcoin-
Alpha

Bitcoin-
OTC Slashdot Epinions

UCN-R 0.500 0.523 0.520 0.520
UCN-I 0.501 0.497 0.508 0.508
SCN 0.671 0.716 0.549 0.629
UJI-R 0.499 0.524 0.513 0.522
UJI-I 0.497 0.489 0.503 0.512
SJI 0.669 0.725 0.550 0.630

UPA-R 0.497 0.587 0.571 0.634
UPA-I 0.481 0.475 0.484 0.498
SPA 0.559 0.628 0.641 0.634
UK-R 0.517 0.587 0.542 0.560
UK-I 0.488 0.482 0.498 0.538
SK 0.730 0.766 0.693 0.702

URWR-R 0.531 0.628 0.569 0.566
URWR-I 0.500 0.481 0.494 0.530
SRWR 0.751 0.775 0.677 0.703

UASCOS++-R 0.530 0.603 0.554 0.573
UASCOS++-I 0.496 0.484 0.497 0.537
SASCOS++ 0.765 0.774 0.663 0.705

For each dataset, we randomly choose 80% as training, and the remaining as testing. We

perform relevance measurements on the training set to get the relevance scores for each pair of

users. The signed specific measurements can obtain a relevance score from [−1, 1]; hence we

directly use the sign of the relevance score to indicate the sign of links. For “X-R" and “X-I",

the relevance score is in “[0,1]". From the training data, we search an optimal threshold from

the training data, and then if the relevance score is less than threshold, we predict a negative link

and positive otherwise. Since positive and negative links are usually imbalanced in real-world

signed networks, we use Area Under the Curve (AUC) as the metric to assess the performance of

link prediction. For all four datasets, network information is available thus they all can be used

in the link prediction experiment. Under the undirected setting, we ignore the directions of links

following common practice in [4].

Sign Prediction Performance: The sign prediction comparison results are shown in Table 3.2
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Table 3.3: Performance comparison of link prediction under the directed setting.

Metrics Bitcoin-
Alpha

Bitcoin-
OTC Slashdot Epinions

UASCOS++-R 0.588 0.630 0.524 0.516
UASCOS++-I 0.562 0.639 0.519 0.493
SASCOS++ 0.644 0.705 0.578 0.580
URWR-R 0.606 0.644 0.541 0.565
URWR-I 0.556 0.590 0.500 0.563
SRWR 0.791 0.809 0.627 0.687

and Table 3.3 for undirected and directed settings, respectively. We note that signed specific

relevance measurements perform much better than these that (1) remove negative links and (2)

ignore signs. These results suggest the importance of negative links in building node relevance

measurements for signed networks. Meanwhile, global signed measurements consistently obtain

better sign prediction performance than local signed measurements. We note that global methods

consider long circles; while local methods only consider triads. This observation is consistent with

that in [61] – long circles contain rich information in helping predict the signs of links. Under

the directed setting, SASCOS++ also outperforms the ASCOS++ variants that (1) remove negative

links and (2) ignore signs; while the signed RWR (i.e., SRWR) obtains the best performance.

3.1.3.2 Tie Strength Prediction

The relevance score for signed networks not only can indicate the signs of links but also can indicate

the connection strengthen. Therefore, another possible application of relevance measurements

is tie strength prediction, which aims to assign a weight to a link to indicate the connection

strengthen [62, 63, 64]. In other words, the input of a tie strength prediction algorithm is an

unweighted (or binary) network and the output is a weighted network.

We have only used the two Bitcoin datasets (Bitcoin-Alpha and Bitcoin-OTC) for this task as

they are the only two of the four datasets that have a ground truth strength associated with each

edge in the network. Note that we have normalized the two datasets to have their strength in the

range [-1,1] to ensure easy mappings from our presented node relevance measurements to the tie
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strengths associated with these datasets edges.

We provide the entire binary network as input and then attempt to predict the tie strength

associated with each edge of the network. Note that we directly use the relevance scores of signed

specific measurements as the predicted tie strength. While for “X-R” and “X-I", we use the similar

strategy as sign prediction for tie strength prediction – we search an optimal threshold from the

training data to map the relevance scores to [-1,1]. Therefore, we use root-mean-square error

(RMSE) as the metric to evaluate the performance of tie strength prediction.

Tie Strength Prediction Performance: The tie strength prediction performance is demon-

strated in Table 3.4 and Table 3.5 for undirected and directed settings, respectively. It can be

observed from the Table 3.4 for the undirected setting:

The first observation Table 3.4 for the undirected setting is that the random tie strength predic-

tion of picking values uniformly in the range [-1,1] results in the worst performance. Now, given

the context of the random baseline performance, we further discuss the results of the relevance

measurements. We note that most of the time, signed specific measurements outperform these that

(1) remove negative links or (2) ignore signs for tie strength prediction. The overall best measure-

ment in each dataset was a signed specific measurement. This further supports the importance of

negative links in signed relevance measurements. Meanwhile, local signed measurements obtain

comparable or even better performance than global signed measurements in tie strength predic-

tion. This observation is different from that of sign prediction. To achieve better sign prediction

performance, we only need to predict the sign accurately. However, for tie strength prediction, in

addition to signs of links, we also need to predict the strength of the relevance correctly. Thus,

local information could be good at predicting relevance strength. In fact, most existing tie strength

prediction algorithms for unsigned networks only use local information [63, 62]. For the directed

setting, we can see that again SRWR is the best performing measurement.
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Table 3.4: Performance comparison of tie strength prediction under the undirected setting.

Metrics Bitcoin-Alpha Bitcoin-OTC
UCN-R 0.286 0.324
UCN-I 0.291 0.332
SCN 0.277 0.308
UJI-R 0.286 0.324
UJI-I 0.291 0.332
SJI 0.277 0.308

UPA-R 0.298 0.333
UPA-I 0.298 0.333
SPA 0.302 0.335
UK-R 0.290 0.326
UK-I 0.295 0.333
SK 0.284 0.320

URWR-R 0.294 0.329
URWR-I 0.296 0.331
SRWR 0.291 0.328

UASCOS++-R 0.292 0.328
UASCOS++-I 0.302 0.345
SASCOS++ 0.299 0.334
Random 0.648 0.664

Table 3.5: Performance comparison of tie strength prediction under the directed setting.

Metrics Bitcoin-Alpha Bitcoin-OTC
UASCOS++-R 0.321 0.362
UASCOS++-I 0.319 0.364
SASCOS++ 0.320 0.364
URWR-R 0.318 0.361
URWR-F 0.319 0.363
SRWR 0.301 0.338
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3.2 Node Centrality Measurement in Signed Networks

Over the years, a large volume of research has focused on the development of centralitymeasures

for networks. These measures seek to define a real-valued function on the nodes of a network,

where these values can provide a ranking of the nodes based on how central (i.e., important) they

are to the network. Social network analysis has primarily driven these efforts seeking to answer

the question – “Who are the most important or central users in a network?”. However, most of the

literature has only focused on unsigned networks, but today there are many networks that can have

positive and negative links (or signed networks), especially in online social media.

There have been recent attempts to define centrality when considering the inclusion of negative

links and they can be roughly grouped into the following two categories: 1) separating the positive

and negative links into two independent networks, then applying existing unsigned centrality

measures to each network, and finally combining the isolated results [65]; and 2) handling positive

and negative links simultaneously by treating negative links as either weak positive links or the

negation of positive links [66]. Apparently, the separation of the positive and negative links is

inherently losing vital information as they fail to capture the interactions between them. It is also

evident that negative links have very different properties from positive links and they are not the

negation of positive links [67] and so methods in the second group are also insufficient to handle

signed networks. Hence, new signed centrality measures are still desired.

Deep learning has been proven to not only be powerful in learning and extracting complex

patterns in data [68, 69, 70, 71] but also being able to approximate functions [72, 73]. Given

these advantages, deep learning has been used to advance various analytical and mining tasks

in complex networks such as learning representations of networks [74, 75, 76, 77], generative

network modeling [78, 79, 80, 81] and node classification [82]. In addition, we have seen deep

learning’s utility in a plethora of other applications [83, 84, 85] and efforts to understand them have

seen continued improvements [86]. Furthermore, the use of a deep neural network would allow

the incorporation of multiple perspectives in defining a signed centrality measurement including

multiple social theories and higher-order structural information, while also having the inductive
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properties such that centrality can be calculated across networks (i.e., training the deep model on

one signed network and then utilizing it for calculating the centralities of the nodes in another

network). Therefore, due to the complexities already inherent in unsigned networks and even

more introduced by negative links, along with the previously stated benefits, deep models have the

potential to capture the complexities for an advanced node centrality in signed networks.

Therefore, we aim to investigate the problem of developing a dedicated centrality measurement

specific for signed networks. We propose a deep framework for learning a signed centrality score

for each user guided by status and balance theories.

3.2.1 An Overview of Deep Signed Centrality (DeSCent) Measurement

Node centrality in unsigned networks is to measure the status of users in a network such that a more

“central” user has a higher value, while other typical “normal” users have lower values. These

measures are based on the network structure and also typically have intuitive physical interpretations

as to which users are being targeted to have a higher centrality based on their respective definitions.

In signed networks, in addition to differentiating between “normal” and “important” users due to

the introduction of negative links, we note a user can be important in either a positive or negative

way (e.g., famous or infamous users).

Hence, we need a dedicated way to realize the signed centrality value for each user. However

signed networks are inherently very complex due to the fact that users can form relations to other

users with both positive and negative links. We therefore propose to use a deep learning framework

to learn a signed centralitymapping 5 : D8 → c8 that projects a user D8 to their learned/corresponding

signed centrality value c8. The benefits of the deep neural network for signed centrality are three fold:

1) has the significant benefit that allows for the deep network parameters learned in one signed

network to be utilzed for signed centrality calculation in other (perhaps much larger) networks

without needing to train a new model for the other network, 2) the deep network can better capture

the complex patterns in the signed network found in the feature input coming from the interactions of

both positive and negative links, 3) it also allows us to construct our definition of signed centrality to

39



40

Figure 3.2: An illustration of our deep neural network for learning signed centrality scores.

easily include multiple perspectives including higher-order structures and multiple social theories.

Due to the fact that users status is related to their connections in the network, we choose to

represent each user D8 with a feature vector x8 extracting from their connections. More specifically,

we extract a set of node and local neighborhood features. However, other approaches could be

taken to construct x8, such as signed network embedding techniques [87, 88, 89], but and we leave

this as one future work. Thus, we can redefine the mapping we wish to discover as 5 : x8 → c8.

Figure 3.2 illustrates the deep learning framework for learning the signed centrality score for

each user. We let our deep model, parameterized by \, be represented by 5\ , such that it defines the

mapping 5\ (x8) → c8. Note that it is not a supervised task since we do not have the “ground truth”

signed centrality scores. Hence, learning the mapping function is challenging. Thus, we seek for

discovering the mapping function that can optimize an objective related to centrality.

In the remainder of this section, we develop ourDeep SignedCentrality (DeSCent)measurement

using the two social theories on signed networks, namely status [2] and balance [30, 29] theories.

We first develop our objective function for DeSCent, then discuss some details of the deep neural

network and the optimization procedure used to train it.
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3.2.2 Signed Centrality Measurement Objective Function

This subsection is organized in four parts: first, we introduce the basic objective for signed

centrality based on status theory and eigenvector centrality to capture local information. Thereafter

we propose to harness balance theory in our signed centrality to include global information. Finally,

two additional constraints are added to our measurement’s objective. After introducing the idea

for each component of DeSCent, we formalize them into an objective function that our deep neural

network can optimize to learn the signed centrality score for each user.

3.2.2.1 Signed Centrality Based on Status Theory

For defining a user’s signed centrality, we first want to discuss the usage of status theory [2]. The

theory states that a positive (or negative) link from D 9 to D8 is implying D 9 ’s opinion that D8 is of

a higher (or lower) status (i.e., rank) than user D 9 . Therefore, if we want to utilize the collective

opinions of other users in the network to describe the ranking of D8, we can derive the following:

c8 = |#8=+8 | − |#
8=−
8 | =

∑
9

A+98 −
∑
:

A−
:8

(3.18)

Note that we do not use the ratio of positive and negative links since in our setting, centrality scores

can be both positive and negative. However this does not take into account the actual status of the

users giving their links to D8, but instead simply counting the number of links D8 receives of each

type. Thus, based on the ideas of Eigenvector centrality [90], we can modify Eq. (3.18) to be the

following:

c8 =
∑

9∈#8=+
8

c 9 −
∑

:∈#8=−
8

c: =
∑
9

c 9A+98 −
∑
:

c:A−:8 (3.19)

We can see that now, rather than counting the number of positive and negative incoming neighbors,

we utilize the centrality of D8’s neighbors to weight these links and construct a recursive definition

of signed centrality.
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3.2.2.2 Harnessing Balance Theory and Higher-order Structures

Until now our formulation only includes information from single directed signed links. However, it

has been shown that not all links are the same (i.e., of equal strength) in social networks and in fact

there is a spectrum of strength implicitly associated with every connection. In unsigned networks,

one heavily studied heuristic to determine the strength of links (both from a social theoretical

standpoint [91] and empirically [62]) is the use of local triangles. Similarly in signed networks we

use local triangles with structural balance theory [30, 29] to further differentiate the types of signed

triangles.

Balance theory tells us that balanced triangles are more likely to form in social networks as

compared to unbalanced ones. A balanced (or unbalanced) triangle is defined as having an even

(or odd) number of negative links. The theory implies that any such unbalanced triangles are

unstable (due to higher frustration in those social triads) and this is the reason they are less likely

to exist. We can utilize these differences and parameterize both types of triangles such that we

can differentiate between those adhering to the social theory (i.e., balanced) and those that do not

(i.e., unbalanced) while adding this local clustering (i.e., higher-order) information to our signed

centrality measurement.

We therefore propose to utilize not only the relationships between users on the single link level

(as shown so far in Eq. (3.19)), but also with triangles in an attempt to more accurately define a

node’s signed centrality. One intuition is that we are more likely to trust the opinion D 9 gives to

D8 if they have a “stronger” connection (i.e. have more common neighbors). Note that whether

the link from D 9 to D8 is positive or negative we assume that when these two users are involved

in more triangles, they have a better sense at judging the status of one another and therefore their

opinion (i.e., directed signed link) should have a higher weight. This provides a principled way for

estimating signed edge strength, and can be further understood through the following example: if a

user D8 is positively connected to three users DG , DH, and DI, but shares a balanced triad with DG , an

unbalanced triad with DH, and no triangles with DI, we might want to infer the strength of the given

links to D8 are not equal from all three neighbors. More specifically, we want to parameterize the
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Figure 3.3: An illustration of how we calculate the matrices T�+, T*+, T�−, and T*−.

triangles such that D8 receives their ranking based more on DG and DH (however not necessarily the

same importance for these two) over DI. Although this example is given in the context of D8 having

three positively linked neighbors, a similar logic applies for negatively linked neighbors.

Here we define the matrix T+ which will represent the relations between positive linked pairs

of users based on the number of triangles they have in common as follows:

T+98 = |{(8, 9 , :) | ( 9 , 8) ∈ E
+ and where D8 , D 9 , and D: together form a triangle}|

Similarly we can define for negatively linked pairs a matrix T− as follows:

T−
:8
= |{(8, 9 , :) | (:, 8) ∈ E− and where D8 , D 9 , and D: together form a triangle}|.

Next, we further separate the triangles relation matrices based on whether they are balanced (i.e.,

having an even number of negative links) or unbalanced (i.e., having an odd number of negative

links). More specifically, we separate T+ into T�+ and T*+, for the balanced and unbalanced

triangles, respectively, and similarly separate T− into T�− and T*−. Figure 3.3 shows how we

define and calculate the matrices T�+, T*+, T�−, and T*− where blue double (or red single) lines

represent the positive (or negative) links. We extend Eq. (3.19) to obtain the below formulation:

c8 =
∑
9

c 9
p 9

(
A+98 + V

+T�+98 + [
+T*+98

)
−

∑
:

c:
p:

(
A−
:8
+ V−T�−

:8
+ [−T*−

:8

)
(3.20)

where V+ and [+ are now used to control the contribution of shared balanced and unbalanced triads

between D 9 and D8, respectively, and similarly for V− and [− with D: and D8. We define pI for a
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user DI as:

pI =
∑
H

(
A+IH + A−IH + V+T�+IH + V−T�−IH + [+T*+IH + [−T*−IH

)
Note that the utilization of the normalizing vector p is based on the same idea as the normalization

in PageRank [92]. More specifically, this is done to prevent a user of very high absolute centrality

from distributing their influence too much to other users and also allows the measurement to be

less susceptible to malicious users attempting to boost (or shrink) rankings.

We point out that we continue to incorporate the single directed edge information from A+ and

A−. This is because if there exists no triangle involving a pair of nodes, but they have an existing

edge, then the corresponding values in the four triangle matrices would all have zero. However, we

seek to include the triangle information to strengthen certain edges in the network, but not wanting

to remove existing “weaker” connections. Although we only focus on triangles to include 2-hop

information, balance theory can be applied to circles of any length. Thus, we can extend our work

to consider longer circles to capture more global information and we will leave it as one future

work.

In terms of our objective for DeSCent, if we let 5\ (x8) replace c8 for a given user D8, then

Eq. (3.20) can be converted into the below objective:

∀D8 ∈ U : 5\ (x8) =
[∑
9

( 5\ (x 9 )
p 9

(
A+98 + V

+T+�98 + [
+T+*

98

) )
−

∑
:

( 5\ (x: )
p:

(
A−
:8
+ V−T−�

:8
+ [−T−*

:8

) )]
The above ensures our network correctly maps the user feature vectors to centrality scores that

match our recursive definition. This leads to the following minimizing problem:

min
\
L(\) =

∑
D8∈U

(
5\ (x8) −

(∑
9

5\ (x 9 )
p 9

(
A+98 + V

+T+�98 + [
+T+*

98

)
(3.21)

−
∑
:

5\ (x: )
p:

(
A−
:8
+ V−T−�

:8
+ [−T−*

:8

) ))2
+ '46(\)

where the last term '46(\) is a regularization term on the deep neural network parameters.
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3.2.2.3 Additional DeSCent Measurement Constraints

We note that there exists a critical problem in the proposed objective function. If a user D8 has no

incoming links, but only outgoing links, then their centrality would be zero (or undefined). In fact,

this problem actually diffuses throughout the network because for another user DG , even if DG has

incoming links, if those incoming neighbors are all similar to D8 (in that they themselves have no

incoming links) then DG will also have a centrality of zero (or undefined) [17]. One solution to this

issue (and the one we have included in DeSCent) is to define users having no incoming links to have

some small constant signed centrality value W. We can see that this is similar to how PageRank [92]

assigns the zapping probability for all nodes. Furthermore, we also want to prevent our network

from optimizing a trivial solution where the signed centrality value is zero for all users. Therefore

we enforce a constraint having the sum lowerbound on the absolute signed centrality for all users

to be W |U|, i.e., the L1-norm of c should be at least W times the number of users in the network. In

the rest of the paper, we will refer to this constraint as the sum constraint. We therefore also seek

to minimize L(\) with respect to \ according to the below constraint:

| |c| |1 =
∑
D8∈U

|c8 | ≥ W |U|

which can be represented as minimizing the following after substituting the network output 5\ (x8)

for c8:

max
(
0, W |U| −

∑
D8∈U

| 5\ (x8) |
)

(3.22)

The second additional constraint we place on our signed centrality measurement is based on the

sign of the centrality values. We note that although we want to utilize our more comprehensive

formulation for the signed centrality, we still wish to have the signed centrality scores maintain

the correct sign suggested by status theory. This can be performed by requiring the centrality

of D8 to be the same sign as suggested by status theory, which can be expressed formally as:

B86=(c8) = B86=( |#8=+8 | − |#
8=−
8
|). In terms of minimization (and similarly substituting 5\ (x8) for
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c8), this can be rewritten as the following:∑
D8∈U

I[8]
(
| 5\ (x8) | + Z

)
(3.23)

where we add the margin Z = 1 to force 5\ (x8) to be the same sign by pushing through zero to

the correct sign, and I[8] is an indicator function. The indicator function’s purpose is to equal

1 whenever the sign of the centrality does not match the sign suggested by status theory and 0

otherwise. Formally we have defined I[8] below:

I[8] =


1 if

(
5\ (x8) × (|#8=+8 | − |#

8=−
8
|)
)
< 0

0 otherwise

where we can see that if 5\ (x8) and ( |#8=+8 | − |#
8=−
8
|) have differing signs then

(
5\ (x8) × (|#8=+8 | −

|#8=−
8
|)
)
< 0 and therefore I[8] = 1 (and I[8] = 0 otherwise). We refer to this term as the status

constraint.
We can now construct DeSCent’s full objective function using Eqs. (3.21), (3.22), and (3.23)

as the following:

min
\
L(\) =

∑
D8∈U

(
5\ (x8) −

(∑
9

5\ (x 9 )
p 9

(
A+
98
+ V+T+�

98
+ [+T+*

98

)
−

∑
:

5\ (x: )
p:

(
A−
:8
+ V−T−�

:8
+ [−T−*

:8

) ))2

+ _1

(
max

(
0, W |U| −

∑
D8∈U

| 5\ (x8) |
))
+ _2

( ∑
D8∈U

I[8]
(
| 5\ (x8) | + Z

))
+ '46(\) (3.24)

where _1 and _2 are introduced to regularize the two terms from our additional constraints.

3.2.3 Overall DeSCent Deep Network Framework

Now, having the objective defined for our deep signed centrality measurement, next we describe

the deep network structure, and the optimization procedure used.

To optimize the objective given in Eq. (3.24) we use a 3-layer fully connected network that

consisting of 500 hidden neurons per layer and using LeakyReLU [93] activation functions on the

hidden layers with negative slope 0.2. We perform batch gradient descent using ADAM [94] with

an initial learning rate set to 0.001.
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Algorithm 3.1: Optimization procedure for DeSCent.
Input: G = (U, E+, E−)
Output: c

1 Respectively create A+ and A− from E+ and E−

2 Construct T�+, T�−, T*+, T*− from A+ and A−
3 Use A+ and A− to extract node features X
4 Randomly initialize the neural network parameters \
5 while Not convergent do
6 Create constant vector k where kI ← 5\ (xI) for user DI
7 Calculate gradient of L(\) using 5\ (x8) after replacing 5\ (x 9 ) and 5\ (x: ) with constants k 9

and k: , respectively
8 Update parameters \ using batch gradient descent
9 Construct signed centrality vector c where c8 ← 5\ (x8)

Algorithm 3.1 details the steps for optimizing our model. On line 1 we construct the two

adjacency matrices A+ and A−, and thereafter on line 2 create the four signed triangle motif

matrices (separated based on whether the triangles are balanced or unbalanced). Line 3 extracts

node features based on the network structure. Then, on line 4, the parameters \ of the deep neural

network are randomly initialized. Lines 5 to 8 loop until convergence and discuss how to calculate

the gradient of our objective. We construct a constant vector k on line 6, which contains DeSCent’s

current proposed signed centrality values. Next on line 7, to perform the update to \ we replace

5\ (x 9 ) and 5\ (x: ) with k 9 and k: , respectively, and by holding their values, we are effectively

treating
( ∑
9

5\ (x 9 )
p 9

(
A+
98
+ V+T+�

98
+ [+T+*

98

)
−∑
:

5\ (x: )
p:

(
A−�
:8
+ V−T−�

:8
+ [−T−*

:8

) )
in our objective

(i.e., Eq. (3.24)) as a constant when calculating the error and only using the derivative in relation

to 5\ (x8). This update procedure is repeated until convergence using batch gradient descent.

3.2.4 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the proposed deep signed

centrality measurement (DeSCent). We seek to answer the following three questions: (1) Can

DeSCent learn better signed centrality scores than other existing signed centrality measurements?

(2) Can the use of deep learning enable centrality cross networks? and (3) How do the parameters

of DeSCent affect its performance?
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Addressing the first two questions is not straight-forward because we do not have “ground-truth”

signed centrality values (i.e., a signed centrality ranking of the users of a signed network). It is

observed that both positive and negative links follow the power law distributions [67]; thus the

link formation in signed networks is related to node status [95]. Therefore, following the common

centrality evaluation in the literature [65], we perform an indirect approach to evaluate the quality

of the signed centrality values by utilizing them for the signed link prediction problem. We will

further discuss the signed link prediction problem and the results of these experiments later in

this section. Then, to answer the second question, we perform further experiments to evaluate

how general the learned deep networks are for mapping the node features to their corresponding

centrality scores, which is evaluated by training on a single dataset and then utilizing the learned

network to calculate the centrality of nodes in the other datasets. To address the third question, we

perform a parameter analysis on DeSCent to observe the contribution of balance theory (V+, V−,

[+, and [−) and the BD< and BC0CDB constraints (controlled by _1 and _2, respectively).

Extracting Node Features: As noted before, the node features can be extracted manually or

learnt automatically via embedding from the network structure. Here we will first try manual

extraction and leave automatic embedding as one future work. We propose to extract three groups

of features for each node – the given node’s signed degree distribution, their neighbors signed

degree distribution, and the number of balanced/unbalanced triangles they are involved in. Below

we define and discuss each feature extracted.

First we discuss how to extract the node signed degree distribution features for a user D8. These

4 features are the in/out positive/negative degrees for the given user D8 (i.e., |#8=+8 |, |#
8=−
8
|, |#>DC+

8
|,

and |#>DC−
8
|).

For the group of signed degree distribution of D8’s neighbors, we extract the average in/out

positive/negative features. However, we obtain four different sets of these averages based on

averaging over neighbors that linked with D8 using one of the four possible directed signed links.

This provides an additional 16 features. For example, one of these features would be the average

incoming negative degree for the set of neighbors that D8 has given a positive link to. If we were to
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denote this example feature as x8∗, then more formally this can be defined as follows:

x8∗ =
1

|#>DC+
8
|

∑
D 9 ∈#>DC+8

|#8=−9 | (3.25)

Note that the other 15 neighbor based sign distribution features for user D8 can be defined similar

to x8∗.

Finally the last two features are the number of undirected balanced and unbalanced triangles

D8 is involved in. These two features can be easily calculated with vector and matrix operations

on S+ and S−, which are the undirected symmetric versions of A+ and A−. Here we show how to

calculate the balanced (i.e., Δ�
8
) and unbalanced (i.e., Δ*

8
) triangles for user D8 as:

Δ�8 = (S
+)
8 S+S+8 )/2 + (S

+)
8 S−S−8 ) + (S

−)
8 S+S−8 )/2 Δ*

8
= (S−)8 S−S−8 )/2 + (S

−)
8 S+S+8 ) + (S

+)
8 S−S+8 )/2

Signed Link Prediction: Since the link formation in signed networks is related to node status,

following the tradition [65], we compare the signed centrality measurements by using them to

perform the signed link prediction task. The problem of link prediction in signed networks is

to predict new positive and negative links when given an existing signed network [4]. For every

user D8 in the signed network, we construct a feature vector f8 consisting of 5 features based on

the computed signed centrality. However, before constructing the feature vectors, we normalize

all signed centrality measurements for a fair comparison across signed centrality measurements.

The first feature, f81, is the centrality value c8 for the user D8 themselves. The other four are

the average centrality scores associated with the neighbor sets of D8 when categorized based on

incoming/outgoing positive/negative connections. The formulations are as follows:

f82 =
1
|#8=+
8
|

∑
D 9∈# 8=+

8

2 9 , f83 =
1
|#8=−
8
|

∑
D:∈# 8=−

8

2: , f84 =
1

|#>DC+
8
|

∑
D 9∈#>DC+

8

2 9 , f85 =
1

|#>DC−
8
|

∑
D:∈#>DC−

8

2:

We approach the signed link prediction problem as a classification problem similar to that done

in [4]. For every edge 48 9 , we can construct a feature vector that is the concatenation of feature

vector f8 and f 9 and the label is based on whether the edge 48 9 was positive or negative. We train a

logistic regression model on the training dataset of edges and then predict the signs of unseen links

(i.e., those in the testing set).
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For the evaluation of the signed link prediction binary classification problemwe use Area Under

the receiver operating characteristics Curve (AUC), since in real-world datasets the positive and

negative links are typically imbalanced (i.e., significantly more positive links than negative links).

Note that a higher AUCmeans a higher probability we rank a randomly selected positive edge higher

than a randomly selected negative one and therefore the higher the better the performance. For

each dataset, we randomly use 90% as training, and the remaining 10% as testing. Hyperparameter

tuning used cross-validation on the training set.

3.2.4.1 Performance Comparison

Here we present some existing signed network centrality measurements such that we can study

the effectiveness of our proposed measurement. We have selected baseline methods that were

designed for determining the centrality or importance of nodes in signed networks. We note that

for succinctness we have selected representative measurements that include recent measurements

and those that have shown to perform well. Similarly, for the sake of space, we do not include

any comparison against unsigned node ranking measurements, but our experiments when ignoring

negative links or treating them equivalent to positive links have shown to perform significantly

worse on the signed link prediction task. Below we have categorized the baselines into two groups:

1) Single Network Baselines; and 2) Separate Network Baselines.

Single Network Baselines: those that utilize the positive and negative links together while

calculating the signed centrality values.

• Signed Spectral Ranking (SR) [24]: This method computes the dominant left eigenvector of

the signed adjacency matrix A.

• Exponential Ranking (ER) [51]: This method simultaneously uses both positive and negative

links and is based upon PageRank [92]. It utilizes a heuristic approach on an exponential

variation and has a fixed-point solution if the exponential parameter ` is selected appropri-

ately.
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• Signed RandomWalk with Restart (sRWR) [96]: This model is state-of-the-art for personal-

ized ranking in signed networks based on the unsigned random walk with restart method and

incorporates balance theory. We note that this method is not the same as the signed random

walk with restart method we proposed in Section 3.1. The centrality c8 of a user D8 can thus

be the summation of personalized rankings for all other users D 9 towards D8.

Separate Network Baselines: those that split the positive and negative links into two inde-

pendent networks and then at the end combine two separate centrality values that were calculated

independently.

• Modified PageRank (MPR) [65]: Here PageRank [92] is performed on the positive only and

negative only networks (i.e., A+ and A−, respectively) and then the negative centrality scores

are subtracted from the positive centrality scores.

• Modified HITS (MHITS) [65]: This method recursively calculates the hubs and authorities

scores separately for the positive only and negative only networks. Then centrality is the

authority The final signed centrality is the authority score on the positive network minus the

authority score on the negative network.

The parameter settings for the baselines were set as follows: 1) for sRWR we use the selected

parameter values of V = 0.6 and W = 0.9 for Slashdot, V = 0.5 and W = 0.9 for the Epinions, and the

two Bitcoin datasets use the same a Epinions, since these were the selected parameters from a grid

search in [96] for Slashdot and Epinions, and since the two Bitcoin datasets have a more similar

balance and positive/negative link ratio to Epinions as compared to Slashdot; 2) for MPR and SR

we used U = 0.15 for the zapping probability as commonly used in practice [24, 65]; 3) for ER we

use ` = 2 as this value satisfies their convergence requirement discussed in [51] based on signed

edge weights as either -1 or 1. For the parameters of our DeSCent measurement we had performed

a grid search over a set of parameter values. More specifically we varied _1, _2, V, and [ while

fixing W = 0.1 and Z = 1. Note that in our experiments we fixed V+ = V− and [+ = [− and we use

V and [ to denote these merged parameter values, respectively.
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Table 3.6: Signed link prediction results with AUC.

Centrality
Measurement

Bitcoin-
Alpha

Bitcoin-
OTC Slashdot Epinions

SR 0.567 0.565 0.570 0.669
ER 0.598 0.619 0.602 0.666

sRWR 0.576 0.570 0.570 0.666
MPR 0.618 0.692 0.593 0.658
MHITS 0.602 0.650 0.680 0.667
DeSCent 0.622 0.702 0.692 0.713

Comparison Results: The results across our four signed networks can be found in Table 3.6.

We first observe that most of the time, single network baselines obtain worse performance. These

observations support that we should not consider negatives links as neither weak positive links nor

the negation of positive links and distinguishing positive and negative links is necessary. We also

note that our Deep Signed Centrality (DeSCent) measurement has the best AUC across all four

datasets. Due to the fact that the AUC metric is more sensitive to incorrectly handling negative

relations, we believe the better performance is DeSCent’s ability to utilize a deep neural network

(which can effectively extract more complex patterns between the positive and negative links)

along with the utilization of both status and balance theories along with higher-order relations in

our objective function.

3.2.4.2 Generalization Across Datasets

In this subsection we seek to further quantify the advantages of using deep learning in defining our

deep signed centrality measurement. Thus we perform experiments to test how well our DeSCent

deep network framework is able to generalize across signed network datasets. More specifically, we

perform inductive experiments where we train a deep network on a single dataset and then utilize

that learned model to extrapolate the centrality scores in other networks from their respective node

features. This for one tests whether the deep framework is learning specific properties nested inside

each signed network dataset, or if it is leaning more general patterns that are inherently found in all

signed network datasets.
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Figure 3.4: Signed link prediction performance comparison of within versus cross training.

Here we present the AUC for the signed link prediction comparing the performance when their

centralities were calculated from a deep network trained on the same network (which we denote

as “within”) or when utilizing the deep network trained on another dataset and thus performing

centrality calculations across signed networks (which we denote as “cross”). This can be seen in

Figure 3.4, where we have shown the generalization across datasets when training in each of our

four datasets and applying to the other three. The main observation we can make from Figure 3.4

is that indeed the parameters learned for the deep networks are very robust and general, since the

performance when trained cross networks is very similar (and in fact sometimes slightly better

or identical) to the centralities calculated within the same network. We note that there are many

advantages of being able to calculate the centralities across networks efficiently. One such example

would be the ability to learn the parameters of DeSCent’s deep network from a small network

(such as either of the two bitcoin datasets) fast and efficiently to then have the ability to calculate

the signed centrality scores in a larger network (such as Epinions or Slashdot) by just feeding

their features through the deep network already optimized from the smaller dataset. Thus, these

inductive experiments provide even more evidence to the usefulness of harnessing deep learning in
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our DeSCent framework to discover signed centrality scores.

3.2.4.3 Parameter Analysis

Here we evaluate the contribution of the sum constraint (i.e., Eq. (3.22)) and the status constraint

(i.e., Eq. (3.23)). We only show results on Bitcoin-Alpha as a representative dataset, since we have

similar observations on other datasets.

The parameter _1 in this method is used to control the contribution of the sum constraint, which

ensures our algorithm can avoid convergence towards the trivial zero solution. Here we investigate

the change in performance as we vary the value of _1 (including setting it to zero, which would

fully eliminate any contribution). Note that we keep all of DeSCent’s other parameters fixed while

we vary the value of _1. We present the results for a representative dataset, Bitcoin-Alpha, from

the cross validation results in terms of AUC in Figure 3.5(a). We point out that while _1 is set to

zero the performance is decreased, thus showing the sum constraint is able to aid in finding a higher

performing solution.

Next we vary the parameter _2 while keeping the other parameters fixed. In this method _2 had

been used for controlling the contribution of the status constraint, which was designed to ensure

that the solution we find (in a global sense) still adheres to the sign suggested by status theory.

Similarly as done for the sum constraint we report the AUC found while varying the value of _2

on the Bitcoin-Alpha dataset. From the results shown in Figure 3.5(b), we can see similar findings

to those discovered for _1. More specifically, we notice the usage of the status constraint with

_2 = 1000 is shown to be quite effective.
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(a) Sum constraint (i.e., _1). (b) Status constraint (i.e., _2).

Figure 3.5: Analyzing the signed centrality additional constraints on Bitcoin-Alpha.
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CHAPTER 4

MODELING NETWORKS WITH NEGATIVE LINKS

In this chapter1,2,3, we investigate modeling of networks having negative links. More specifi-

cally, we first focus on constructing a generative network model for signed networks including

an automated parameter learning framework that we empirically evaluate compared with existing

mechanistic signed network models and other baseline models. Thereafter, we study how to extend

and model balance theory in signed bipartite networks, followed by an empirical analysis verifying

its applicability towards being harnessed for sign link prediction.

Generative network modeling aims to design a model to represent a complex network through

a few relatively simple set of equations and/or procedures such that, when provided a network as

input, the model can learn a set of parameters to construct another network that is as similar to

the input as possible. Ideally this would result in many observable/measurable properties being

maintained from the input to the generated output network. In unsigned networks, the typical

modeled properties are the power law degree distribution [97, 98, 99, 11], assortativity [100, 101],

clustering coefficients [102, 103, 104, 105], and small diameter [98, 103]. Nowadays, more data

can be represented as large networks in many real-world applications such as the Web [28, 106],

biology [107, 108], and social media [109, 110]. Increasing attention has been attracted in better

understanding and modeling networks. Traditionally network modeling has focused on unsigned

networks. However, many networks can have positive and negative links (or signed networks [30,

29]), especially in online social media, which then raises the question – whether dedicated efforts

1Tyler Derr, Charu Aggarwal, and Jiliang Tang. “Signed NetworkModeling Based on Structural
Balance Theory.” In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management (CIKM). 2018.

2Tyler Derr, Cassidy Johnson, Yi Chang, and Jiliang Tang. “Balance in Signed Bipartite Net-
works.” In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management (CIKM). 2019.

3Tyler Derr and Jiliang Tang. “Congressional Vote Analysis Using Signed Networks.” In
Proceedings of the 18th International Conference on Data Mining Workshops (ICDMW). 2018.
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are needed to model signed networks in addition to the unsigned techniques. Thus, in Section 4.1

we present our proposed generative signed network model that focuses on maintaining core network

properties including the degree distribution and local clustering and in addition those specific to

signed networks, namely link sign ratio and signed triangle distributions to ensure they maintain

the correct level of balance.

Althoughwe have primarily focused on the development of signed networks, which are a specific

type of network that has become increasingly ubiquitous, there are in fact various variants of signed

networks. However, previous work and theories for signed networks have primiarly focused on

unipartite signed networks, which are networks that have a single node type and signed links are

able to connect any two nodes in the network. However, a common form of signed networks that

have primarily been overlooked – signed bipartite networks. These networks have two sets of nodes

and links are only able to be formed between nodes of different types. Actually, signed bipartite

networks appear across multiple domains. For example, in e-commerce, a signed bipartite network

can be constructed between buyers and sellers in multi-vendor marketplaces when the users are

asked to rate the other after each transaction and helpfulness ratings from users to reviews can

be naturally denoted as a signed bipartite network. Signed bipartite networks on the one hand,

are commonly found, but have primarily been overlooked. Their complexities of having two node

types where signed links can only form across the two sets introduce challenges that prevent most

existing literature on unipartite signed and unsigned bipartite networks from being applied. On

the other hand, balance theory, a key signed social theory, has been generally defined for cycles

of any length and is being used in the form of triangles for numerous unipartite signed network

tasks. However, in bipartite networks there are no triangles and furthermore there exist two types

of nodes. Therefore, in Section 4.2, we conduct the first comprehensive analysis and validation of

balance theory using the smallest cycle in signed bipartite networks - signed butterflies (i.e., cycles

of length 4 containing the two node types). Then, to investigate the applicability of balance theory

aiding signed bipartite network tasks, we develop multiple sign prediction methods that utilize

balance theory in the form of signed butterflies.
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4.1 Generative Modeling of Signed Networks

Signed networks are unique from unsigned not only due to the increased complexity added to

the network by having a sign associated with every edge, but also (and more importantly) because

there are specific principles (or social theories), such as balance theory, that play a key role driving

the dynamics and construction of signed networks [2, 4]. For example, in unsigned networks we

have the property of transitivity and we see a large amount of local clustering (i.e., formation of

triangles). In comparison, with signed networks, not only are their patterns in the network driving

local clustering, but also in the distribution of triangles (based on their edge signs) found in the

network. Suggested by balance theory [29], some triangles are more likely to be formed (i.e.,

balanced) than others (i.e., unbalanced) in signed networks. Hence, modeling signed networks

requires to preserve not only unique properties of signed networks such as the sign distribution,

but also other properties suggested by their principles such as the distribution of formed triangles.

However, these mechanisms are not incorporated into unsigned network modeling and unsigned

network models are unequipped for signed networks. Thus, there is a need to design network

models for signed networks.

Networkmodels havemany direct applications and a diverse set of benefits beyond and including

the better understanding of the network structure and dynamics. Currently there is a significant push

for better anonymization in social media. However, for researchers wanting to further advance their

field, it is necessary to utilize the network data for knowledge discovery, mining, and furthermore

for testing and benchmarking their methods and algorithms. A generative network model could be

utilized for constructing synthetic networks having similar properties as their corresponding real

network, but without compromising the user’s privacy and allowing further advancements through

the use of the synthetic network datasets. Similarly such a model can be used as a null-model for

network property significance testing or for constructing synthetic networks of varying network

properties to further understand the relationship between the networkmodel and real world networks

in terms of their dynamics and construction process. Thus, we propose a novel signed network

model, which targets to preserve three key properties of signed networks – (1) degree distribution;
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(2) sign distribution and (3) balance/unbalanced triangle distribution suggested by balance theory.

4.1.1 Problem Statement

A signed network G is composed of a set + = {E1, E2, . . . , E# } of # vertices, a set of "+ positive

links E+ and a set of "− negative links E−. Let E = E+ ∪ E− represent the set of " = "+ + "−

edges in the signed network when not considering the sign. Here we focus on undirected and

unweighted signed networks and leave modeling directed and weighted signed networks as one

future work. We note that unlike defined in Section 2.1 here we useV to denote the set of vertices

in the signed graph, as compared toU representing the users in the signed network to follow more

traditional notations in unsigned generative graph models.

We can formally define the generative signed network modeling problem as follows:

Given a signed network G� = (+� , E+� , E
−
�
) as input, we seek to learn a set of parameters Θ for

a given modelM that can retain the network properties found in G� , such that we can construct

synthetic output networks G> = (+>, E+> , E−> ), usingM based on Θ, that closely resemble the input

network in terms of measured network properties.

Traditionally network modeling has focused on unsigned networks and preserving unsigned

network properties. Signed networks have distinct properties from unsigned networks [67]. For

example, negative links are available in signed networks and ignoring the negative links can result

in over-estimation of the impact of positive links [111]; and most of triangles in signed networks

satisfy balance theory [28]. However, these properties cannot be simply captured by unsigned

network models. Hence, dedicated efforts are demanded to model signed networks. The notations

wewill use in defining our proposed signed generative networkmodel are demonstrated in Table 6.4.

4.1.2 An Overview of Balanced Signed Chung-Lu (BSCL) Model

A previous study demonstrated that the node degrees of signed networks also follow power law

distributions [67] similar to that of unsigned networks. Hence, we propose to build the signed

networkmodel based on the unsigned Chung-Lumodel, which can preserve the degree distributions
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Table 4.1: Notations regarding signed network generative modeling.

Notations Descriptions
48 9 undirected edge between vertices E8 and E 9
#8 set of neighbors for node 8
d degree vector based on E� where 38 is the degree of E8
[ fraction of links being positive in G� (i.e., "+� /"� )
Δ� fraction of triangles balanced in G�
π sampling vector from degree distribution in E�
d probability new edge closes a wedge to be a triangle in G>

via two-hop walk instead of a randomly inserting an edge
U probability a randomly inserted edge into G> is positive
V probability of closing a wedge to have more balanced triangles in G>
ΔA0=3><
8 9 (�) approximation to the E[# of (balanced) triangles]

that will get created due to randomly inserting 48 9
ΔA0=3><G(�) average of ΔA0=3><

8 9 (�) across all possible edges

Δ
CA80=6;4

8 9 (�) approximation to the E[# (balanced) triangles]
created when inserting edge 48 9 via the wedge closing procedure

Δ
CA80=6;4

G(�) average of Δ CA80=6;4
8 9 (�) across all possible edges

of the input work. The Chung-Lu (CL) model first takes an unsigned network G� = (+� , E� ) as

input and independently decides whether each of the #2 edges are placed in the generated network

with each edge 48 9 having probability
383 9
2" where 38 is the degree of node E8 and" is the number of

edges in the network. It can be shown that the expected degree distribution of the output networkG>

is equivalent to that of G� . A fast variant of the Chung-Lu model, FCL [112], is proposed to create

a vector π which consists of 2" values, where for each edge both incident vertices are added to

the vector. Rather than deciding whether each of the #2 edges get added to the network (as done in

CL), FCL can just randomly sample two vertices from π uniformly, since this simulates the degree

distribution. Note that FCL ignores self-loops and multi-edges when sampling " edges. However,

since most real-world unsigned networks have higher clustering coefficients than those generated by

CL and FCL, another CL variant Transitive Chung-Lu (TCL) was introduced in [102] to maintain

the transitivity. Rather than always picking two vertices from π, instead, TCL occasionally picks a

single vertex from π and then, with a parameter d, performs a two-hop walk to select the second

vertex. When including this edge, the process is explicitly constructing at least one triangle by
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closing off the wedge (i.e., wedge closing procedure) created by the two-hop walk.

The proposed Balanced Signed Chung-Lu model (BSCL) is based on the TCL model, which

automatically allows the mechanism for maintaining the degree distribution and also the local

clustering coefficient during the construction process. However, as previously mentioned, the

distribution of formed triangles is a key property in signed networks and most of these triangles

adhere to balance theory. Note that, when performing the wedge closure procedure, we are not only

closing the single wedge we explicitly constructed (through our two-hop walk), but there could be

other common neighbors between these two vertices. Thus, we introduce a parameter V, which

denotes the probability of assigning the edge sign to ensure the majority of the triangles being

created by this new edge are balanced. With the introduction of this parameter, our model is able

to capture a range of balance in signed networks. This is necessary since not all signed networks

are completely balanced, and in fact real-world networks can have a varied percentage of triangles

being balanced [4].

Meanwhile, we also want to maintain sign distribution. However, the above process of deter-

mining the edge sign for wedge closure is based on balance theory (i.e., local sign perspective) and

not on the global sign perspective (i.e., [). This implies that when randomly inserting an edge into

the network if we simply choose the sign based on [, then this could lead to our generated networks

deviating from the true sign distribution of the input network. Therefore, we introduce U, which is

a corrected probability (instead of using [) for a randomly inserted link and is used to correct the

bias of positive or negative edges that will be created through the use of V which is from the local

sign perspective.

With the introduction of three parameters (i.e., d, U and V), the proposed balanced signed

Chung-Lu model (BSCL) is shown in Algorithm 4.1. Here we step through the high level processes

of BSCL before later discussing both the network generation process and the parameter learning

algorithms. On line 1 of Algorithm 4.1, we first construct E. Then, using the degree distribution

of E, we can construct the vertex sampling vector π as shown on line 2. Next we calculate the

properties of the input network we aim to preserve. These include the percentage of positive links
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Algorithm 4.1: Balanced Signed Chung-Lu (BSCL) Model
Input: Signed Network G� = (+� , E+� , E

−
�
)

Output: Synthetic Signed Network G> = (+� , E+> , E−> )
1 E� = E+� ∪ E

−
�

2 π ← Sampling vector based on the degree distribution in E�
3 [←

"+
�

"+
�
+"−

�

4 d← Calculate_Degree_Vector(+� , E)
5 Δ� ← Percentage balanced triangles in G�
6 d, U, V← Parameter_Learning(E� , [,Δ�, d, ")
7 E+> , E−> ← Network_Generation([, ",π, d, U, V)

[, vector of degrees d, and percentage of balanced triads Δ� from lines 3 to 5. With these values,

we will estimate the major parameters of BSCL including d, U and V as mentioned on line 6 using

our learning algorithms that will be discussed in subsection 4.1.4. Finally, we generate the network

based on the learnt parameters on line 7 and then output the constructed synthetic signed network

G>. In the next subsection, we will discuss the details of the network generation process performed

by BSCL and then discuss how these parameters can be automatically and efficiently learned.

4.1.3 Network Generation for BSCL

Given the parameter values for d, U and V, we show in Algorithm 4.2 how BSCL can generate a

synthetic signed network maintaining the key signed network properties. First, on line 1, we use

the FCL method for the construction of a set E> of M edges, which adheres to the original degree

distribution. Then, on line 2, we split the unsigned edges into two sets, E+> and E−> , by randomly

assigning edge signs, based on [, such that the percentage of positive links matches that of the

input network. Next, from lines 3 to 17, we add " new edges to the network, one at a time, while

removing the oldest edge in the network for each new edge inserted. The reason for starting with

this initial set of edges from FCL on line 1 is due to the fact when performing the wedge closing

procedure (from lines 5 to 10), if the starting network is initially too sparse, there will not be many

opportunities for two-hop walks to create triangles. We note that after each iteration from lines 3

to 17, G> maintains the correct total number of edges, " .
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Algorithm 4.2: BSCL_Network_Generation([, ", c, d, U, V).
1 E> = ��! (M,π)
2 E+> , E−> ← Randomly partition E> based on [
3 for 1 to M do
4 E8 = sample from π
5 if wedge_closing_procedure(d) then
6 E 9 = Perform two-hop walk from E8 through neighbor E:
7 if close_for_balance(V) then
8 Add 48 9 to E+> or E−> based on the sign that closes the wedge and other common

neighbors to have more balanced triangles
9 else
10 Add 48 9 to E+> or E−> to have more unbalanced triangles

11 else insert a random edge
12 E 9 = sample from π
13 if create_positive_edge(U) then
14 E+> ← E+> ∪ {48 9 }
15 else
16 E−> ← E−> ∪ {48 9 }

17 Remove oldest edge from {E+> ∪ E−> } respectively
18 return E+> , E−>

We will either insert an edge by closing a wedge into a triangle and using V to help maintain

the balance, or insert a random edge and select its sign based on U to correctly maintain the sign

distribution. On line 5, we use our parameter d to determine which edge insertion method we will

use. Next we will further discuss these two edge insertion procedures.

The wedge closing procedure is selected with probability d on line 5, but starts on line 4 with

the selection of E8 uniformly at random from π. Then, on line 6, we perform a two-hop walk from

E8 through a neighbor E: to land on E 9 . We have just selected the wedge consisting of edges 48:

and 4: 9 to close into a triangle. We note that although we are explicitly constructing the triangle

composed of vertices E8, E: and E 9 that edge 48 9 would also implicitly be closing wedges to form

triangles with any other common neighbors that E8 and E 9 might have. Hence, we use our learned

parameter V for determining if we should introduce more balanced or unbalanced triangles into the

network based on the total balance in the input signed network (i.e., Δ�). Therefore, on line 7,

with probability V, we choose to select the edge sign of 48 9 such that the majority of the triangles
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being created (both those explicitly through the two-hop walk and implicitly through other common

neighbors) will adhere to balance theory. As mentioned on line 8, depending on whether balance

theory would suggest 48 9 to being positive or negative, we will add the edge to the set E+> or E−> ,

respectively. Similarly, with probability (1-V), the sign of 48 9 will be selected to introduce more

unbalanced triangles into the generated network.

If not performing the wedge closing procedure, BSCL will instead insert a random edge with

probability (1 − d). This process starts similarly as line 4 by selecting the first vertex E8. Then,

on line 12, a second vertex is sampled from π such that we can then insert edge 48 9 into the

network. However, since we desire our generated network to maintain the correct sign distribution,

the sign for the edge 48 9 needs to carefully be determined. As previously discussed, the wedge

closing procedure will disrupt the global sign distribution and therefore rather than using [ for

the sign selection, we use our learned parameter U. We again note that U will be learnt such

that it incorporates the bias induced from the local sign selections made during the wedge closing

procedure controlled by V. Therefore, with probability U, on line 13, we choose to go to line 14 and

insert 48 9 as a positive link and add it to the set E+> . On the other hand, with probability (1 − U),

we go to line 16 and select 48 9 to be negative and therefore add it to the set of negative edges E−> .

After edge insertion, the next step is to remove the oldest edge in the generated network G>

such that it maintains " edges. Line 17 shows that we select the oldest edge from the union of the

positive and negative edge sets (i.e., E+> ∪ E−> ) and then respectively remove it from the edge set

it was selected from. After performing this loop from lines 3 to 17 " times, all the initial edges

from FCL will have been removed and the network generator can return the resulting positive and

negative edge sets E+> and E−> , respectively.

One step we did not mention in Algorithm 4.2 for ease of description is that we also make use of

a queue for when having collisions (i.e, selecting to insert an edge that already exists in the network

or a self-loop). For every time we have such a collision, the vertices are added to the queue. Then,

before each time selecting an edge from π (i.e. on lines 4 and 12), the queue is checked. If the

queue is empty, then we proceed to sample from π. However, if the queue is non-empty, then we
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instead take from the front of the queue. Similarly, we utilize the queue if unable to perform a two

hop walk from vertex E8. Next we will discuss how we can learn the parameters d, U, and V.

4.1.4 Parameter Learning for BSCL

In the last subsections, we have introduced the BSCL model and network generation process based

on the parameters d, U, and V, here we discuss how to learn these parameters from the input

signed network. We notice that these parameters are related to each other. For example, when

constructing triangles to be balanced or unbalanced (based on V), this will disrupt the global sign

distribution since these decisions are only based on the local sign perspective. Similarly, when

inserting a random edge with a sign based on U, this has the potential to disrupt the distribution

of triangles and the percentage of triangles that are balanced in the network. This is because the

decision for the sign of a random edge insertion is based solely on the global sign perspective

and ignores the local perspective of whether triangles are being created via this inserted edge to

be balanced or unbalanced. Hence, next we discuss the proposed algorithm for learning these

parameters alternatively and iteratively.

4.1.4.1 Learning d

For the parameter d, wemake use of theExpectation-Maximization (EM) learningmethod following

a similar process in the TCL model [102]. The general idea is that it can be learned after defining

a hidden variable associated with each edge, which determine whether the edge was added to the

network randomly or through a wedge being closed into a triangle. More specifically, let I8 9 ∈ /

be the latent variable assigned to each edge 48 9 . These latent variables can be equal to 1 or 0, where

I8 9 = 0 indicates that the edge was created via random sampling from π and I8 9 = 1 suggests that

the edge 48 9 was created through the two-hop walk wedge closing procedure.

Let π8 represent the probability of selecting E8 from the sampling vector π8, I[E 9 ∈ #: ] as

an indicator function to be 1 if E 9 is in the neighbor set of E: and 0 otherwise, and dC denote the

value of d at iteration C during the EM process. Next we analyze the two procedures of wedge
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closing or random insertion given a starting node (i.e., first selected node) E8. We can calculate the

probabilities based on the following: (1) for the random insertions with probability (1 − d) and

selecting E 9 as the second node with probability π8; (2) the wedge closing with probability d and

the probability we were able to perform a two-hop walk to E 9 is based on first having E: that is a

mutual neighbor of E8 and E 9 (i.e., E: ∈ #8 and E: ∈ # 9 ) and then the walk continues to E 9 (i.e.,

selecting E 9 from the 3: neighbors of E: ) once arriving at the mutual neighbor E: . Therefore, we

can formulate the conditional probabilities for placing the edge 48 9 given d, the starting node E8 and

the method for either the random insertion or wedge closing procedure (that is represented with

I8 9 ) are as follows, respectively:

%(48 9 |I8 9 = 0, E8, dC) = (1 − dC) (π8)

%(48 9 |I8 9 = 1, E8, dC) = dC
∑
E:∈#8

( I[E 9 ∈ #: ]
38

) ( 1
3:

)
For the calculation of the expectation of I8 9 given dC , 48 9 , and the starting node E8, the conditional

probability of I8 9 can be defined using the Bayes’ Rule as follows:

%(I8 9 = 1|48 9 , E8, dC) =
%(48 9 |I8 9 = 1, E8, dC)

%(48 9 |I8 9 = 1, E8, dC) + %(48 9 |I8 9 = 0, E8, dC)
(4.1)

which calculates the probability of I8 9 being 1 based on the probability of the edge being created

by wedge closure over the probability the edge 48 9 is expected to get created. This leads to the

expectation of I8 9 to E[I8 9 |dC] = %(I8 9 = 1|48 9 , E8, dC). Furthermore, the maximization for the

expectation can be calculated via sampling a set of edges S uniformly from E. Then, due to the

fact I8 9 is conditionally independent, we can individually calculate the expectation of I8 9 for each

edge in S and then take the average across the set of edges sampled as:

?C+1 =
1
S

∑
48 9 ∈S

E[I8 9 |dC] (4.2)

4.1.4.2 Learning V

Note that we have calculated Δ� from the input network that denotes the percentage of triangles

that were adhering to balance theory. We seek to approximate the expected number of triangles
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BSCL will construct through the wedge closure and the random edge insertion methods on average

for each edge added to the network. Let us denote the values we calculate for these two methods

as Δ CA80=6;4G and ΔA0=3><G , respectively, which will be calculated with respect to both d and U.

Furthermore, we will calculate what percent of these we expect to be balanced as Δ CA80=6;4G� and

Δ
CA80=6;4

G� . Details of estimating Δ CA80=6;4G , ΔA0=3><G , and ΔA0=3><G� will be discussed later. To

correctly maintain the percentage of triangles being balanced in the synthetic network, we desire

the following:

Δ� =
Δ
CA80=6;4

G� + ΔA0=3><G�

Δ
CA80=6;4

G + ΔA0=3><G

which simply states the combined balanced percentage from the twomethods should be the balanced

percentage of the input network. Then, we can calculate the above mentioned values and if we

let Δ CA80=6;4G� = VΔ
CA80=6;4

G , which denotes that V percent of the triangles we close via the wedge

closing procedure are balanced, then we can solve V and obtain the below:

V =
Δ�

(
Δ
CA80=6;4

G + ΔA0=3><G
)
− ΔA0=3><G�

Δ
CA80=6;4

G
(4.3)

Next, we discuss how to estimate ΔA0=3><G , ΔA0=3><G� and Δ CA80=6;4G .

Estimating �random
G : We note that the starting set of edges are constructed with the FCL

method and edge signs randomly assigned to them. Furthermore, each edge will have been added

into the network with probability ?8 9 =
383 9
2" . We note that the expected number of common

neighbors between two vertices E8 and E 9 would be equivalent to the number of triangles that get

created if the edge 48 9 was inserted into the network where we denote this number of triangles to

be ΔA0=3><
8 9

.

To obtain the number of common neighbors for E8 and E 9 , we calculate the probability that

E; ∈ +�\{E8, E 9 } is a common neighbor based on the probability there exists an edge from E; to

both E8 and E 9 . Note that after having the probability of the existence for the first edge 48; , we must

subtract 1 from 3; , since we have already conditioned on the existence of the first edge 48; , thus
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causing E; to have one less opportunity to connect to E 9 . We formulate this idea as the following:

ΔA0=3><8 9 =
∑

E;∈+\{E8,E 9 }

(383;
2"

) (3 9 (3; − 1)
2"

)
=

(383 9
2"

) ∑
E;∈+\{E8,E 9 }

(3; (3; − 1)
2"

)
Next we present the average value of ΔA0=3><

8 9
across all possible unordered pairs of vertices as

follows:

ΔA0=3><G =
1

1
2# (# − 1)

#−1∑
8=1

#∑
9=8+1

ΔA0=3><8 9

where ΔA0=3><G is used to denote the average triangles constructed by a randomly inserted edge in

the model. We note that the above would require $ (#3) time to compute, but using the fact that

2" = # ∗ 0E6(3), we can use the following approximation if we treat the summation such that it

includes E8 and E 9 instead of excluding them. We use 0E6(3) to denotes the average degree and

0E6(32) represents the average value of squared degrees. Then we have:∑
E;∈+\{E8,E 9 }

(3; (3; − 1)
2"

)
≈

∑
E;∈+

(3; (3; − 1)
2"

)
=
(32

1 + 3
2
2 + · · · + 3

2
#
) − (31 + · · · + 3# )

2"

=

(
0E6(32)#

)
−

(
0E6(3)#

)
# ∗ 0E6(3)

=

(0E6(32) − 0E6(3)
0E6(3)

)
(4.4)

We therefore can rewrite ΔA0=3><G as follows:

ΔA0=3><G ≈ 0E6(32) − 0E6(3)
0E6(3)"# (# − 1)

#−1∑
8=1

#∑
9=8+1

383 9

First we note that we only need to compute 0E6(3) and 0E6(32) once (which can be performed

in $ (#) time). Second, for
∑#−1
8=1 38

∑#
9=8+1 3 9 , rather than iterating over the nested sum of

9 = 8 +1 to # , we can instead use dynamic programming to construct a vector s where B8 represents
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∑#
9=8+1 3 9 . We can construct this vector s starting with B8 = 3# when 8 = # −1 and then recursively

filling in the vector using B8−1 = B8 + 38, which can be performed in linear time in relation to the

number of vertices # . Therefore the below approximation for ΔA0=3><G can be performed in $ (#)

time instead of $ (#3).

ΔA0=3><G ≈ 0E6(32) − 0E6(3)
0E6(3)"# (# − 1)

#−1∑
8=1

38B8 (4.5)

Estimating ΔA0=3><G� : We further analyze beyond our calculation of ΔA0=3><G by examining the

wedges (i.e., common neighbors) to be one of the following formations: ({+, +}, {+,−}, {−, +},

{−,−}), where {+,−} is used to represent the wedge formed by edges 48; and 4; 9 and their signs

are positive and negative, respectively. Note that we first initialize our model with edges from FCL

and select edge signs to perfectly match the sign distribution of the original network, and then

we attempt to correctly maintain this distribution with the parameter U; hence we assume that all

wedges were created by the original sign distribution (where [ is the probability of a link being

positive). Below, we use ΔA0=3><+−
8 9

to represent the number of wedges that would be closed into

triangles when adding the edge 48 9 and were formed with a wedge of type {+,−}. The definitions

for all the wedge types are:

ΔA0=3><++8 9 = [[ΔA0=3><8 9

ΔA0=3><+−8 9 = ΔA0=3><−+8 9 = [(1 − [)ΔA0=3><8 9

ΔA0=3><−−8 9 = (1 − [) (1 − [)ΔA0=3><8 9

The expected number of balanced triangles that would be created if the edge 48 9 is inserted

randomly, ΔA0=3><
8 9�

, can be obtained via the expected number of wedges of different types and the

corrected positive link probability U as:

ΔA0=3><8 9� = UΔA0=3><++8 9 + (1 − U)ΔA0=3><+−8 9

+(1 − U)ΔA0=3><−+8 9 + UΔA0=3><−−8 9 (4.6)

where for a wedge with two existing edges to close to a balanced triangle, the added third edge

would need to have a sign such that there are an even number of negative links in the resulting
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triangle, according to balance theory. This can also be extended for the calculation of ΔA0=3><G� by

averaging across all edges.

Estimating Δ CA80=6;4G : Similarly, we will calculate the expected total number of triangles and

the balanced percentage when using the wedge closing procedure. The main idea for this wedge

closure is that we are guaranteed to select vertices such that we have at least one triangle being

created each time. We then need to also add the expected number of triangles that would be created

randomly by other common neighbors of E8 and E 9 (similar to the random edge insertion case

above). Note that we must however discount the degree of E8 and E 9 by 1, since in this method,

we have already explicitly used one of the links coming from both to discover this one common

neighbor for the wedge closure edge insertion. Let us denote the selected common neighbor as E2,

which forms a wedge with the edges 482 and 42 9 .

Δ
CA80=6;4

8 9
= 1 +

∑
E;∈+\{E8,E 9 ,E2}

( (38 − 1)3;
2"

) ( (3 9 − 1) (3; − 1)
2"

)
= 1 +

(383 9 − 38 − 3 9 + 1
2"

) ∑
E;∈+\{E8,E 9 ,E2}

(3; (3; − 1)
2"

)
Similarly, as the approximation in Eq. (4.4), we can simplify the formulation of Δ CA80=6;4

8 9
as:

Δ
CA80=6;4

8 9
≈ 1 +

(383 9 − 38 − 3 9 + 1
2"

) (0E6(32) − 0E6(3)
0E6(3)

)
Then we can also calculate Δ CA80=6;4G similar to ΔA0=3><G , which results in the following:

Δ
CA80=6;4

G ≈ 1 + 0E6(32) − 0E6(3)
0E6(3)"# (# − 1)

#−1∑
8=1

(
(38 − 1) (B8 − # + 8)

)
4.1.4.3 Learning U

Here we want to estimate the percentage of positive edges. Therefore, we will examine this

percentage for both the wedge closing and the random edge insertion, which are denoted as

[CA80=6;4 and [A0=3>< , respectively. Then, if we have these two values, we can correctly maintain
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the percentage of positive links in the synthetic network as the following:

[ = d[CA80=6;4 + (1 − d)[A0=3>< (4.7)

The above is due to the fact that the wedge closing procedure will insert d percent of the links into

the generated network while the random insertion method will construct (1 − d) percent.

For the wedge closure, we examine the probability of the four types of wedges: {+,+}, {+,-},

{-,+} and {-,-}. Then we define their probabilities of existing in the network to be P({+,+}),

P({+,-}), P({-,+}) and P({-,-}). Next we note that the wedge {+,+} and {-,-} would result in a

positive edge being created with probability V, while wedge {+,-} and {+,-} would only provide a

positive edge with probability (1 − V). The reason for this is due to the fact that balance theory

would be controlling the third edge sign and while the first two require a positive link to adhere

to balance theory; while it would be when we construct more unbalanced triangles that the later

two wedge types would result in a positive link insertion. Therefore, we denote the probability of

inserting a positive edge with the wedge closure to be the following:

[CA80=6;4 = d

(
V
(
%({+, +}) + %({−,−})

)
(1 − V)

(
%({+,−}) + %({−, +})

) )
(4.8)

We note that d is the probability of performing the wedge closing procedure. If we assume that U

and V are correctly solved, then the expected probability for the wedges is based on [ and (1 − [).

We can therefore rewrite Eq. 4.8 as:

[CA80=6;4 = d

(
V
(
([[) + (1 − [) (1 − [)

)
(1 − V)

(
[(1 − [) + (1 − [)[

) )
(4.9)

Next, we show how to calculate [A0=3>< . We notice that U will be the percentage of links

we construct to be positive and this process will happen (1 − d) percent of the time. Thus,

[A0=3>< = (1 − d)U. We can now substitute [CA80=6;4 and [A0=3>< into Eq. 4.7 and solve for U as
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follows:

U =
1

(1 − d)

(
[ −

(
dV

(
([[) + (1 − [) (1 − [)

)
+ (1 − V)

(
[(1 − [) + (1 − [)[

) ))
(4.10)

4.1.5 Time Complexity of BSCL

We first discuss the running time of the learning algorithm and then the time needed for the

network generation process. The preprocessing needed for the learning algorithm is to determine

the probability of edges being positive, [, and the probability of triangles in the network being

balanced and adhering to balance theory, Δ�, of the original network. We can determine [ trivially

in $ ("). However, Δ� can be reduced the complexity of triangle listing algorithms, which can be

easily performed using classical methods in $ (<8=("3/2, "3<0G)), where 3<0G is the maximum

degree in the network[113]. The learning process for the parameter d is $ (B�) where � is the

number of iterations in the EM method and B = |S| is the number of edges sampled for each

iteration. The running time of V and U can be determined as follows. We initially calculate the

expected number of triangles added by each of the processes of BSCL, which takes $ (#) instead

of $ (#3) due to the approximation used and dynamic programming approach. Then the update

equations (i.e., Eqs. (4.3) and (4.10)) can both be performed in $ (1) time. Thus when allowing

for �′ maximum iterations of the alternating update process between U and V (which empirically

only takes a small constant number of iterations to converge), we have the overall learning time

complexity for BSCL as $ (<8=(<3/2, <3<0G) + #2 + B� + �′). The generation process of BSCL,

is built upon the fact that the running time for TCL is shown to be$ (# +") in [102]. The triangle

closing process of determining the best sign selection based on the set of triangles being closed,

is reduced to the complexity of common neighbors between two vertices, which is known to be

$ (32
<0G). Thus the generation process of BSCL is $ (# + "32

<0G).
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Table 4.2: Statistics of three signed social networks for generative modeling.

Network N (E, [) Δ�
Bitcoin-Alpha 3,784 (14,145 , 0.915) 0.862
Bitcoin-OTC 5,901 (21,522 , 0.867) 0.869
Epinions 131,580 (711,210 , 0.830) 0.892

4.1.6 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the proposed signed network

model. In particular, we try to answer two questions via our experiments - (1) can the proposed

model, BSCL, effectively maintain signed network properties? and (2) is the parameter learning

algorithm able to learn the appropriate parameter values from the input signed network?

For our study of signed networkmodeling, we utilize three signed network datasets, i.e., Bitcoin-

Alpha, Bitcoin-OTC, and Epinions. We provide more details of the datasets in Table 4.2. Note

that, since we focus on undirected and unweighted signed networks, we ignore the directions of

signed links in these datasets.

4.1.6.1 Network Generation Experiment

Thefirst set of experiments are to compare the network properties of the resulting generated networks

from our model and the baselines. These properties will be used as a metric to determine how well

the models are able to capture the underlying dynamics of signed networks. More specifically, we

will focus on the three key signed network properties - (1) degree distribution; (2) positive/negative

link ratio and (3) proportion of balance/unbalanced triangles suggested by balance theory. Note

that we also present the local clustering coefficient distribution and the triangle distribution (in

relation to the edge signs in the triangles). Our results are the averaged results of 10 generated

networks for each of the methods on each dataset.

The first group of two baselines are existing signed network models:

• Ants14: This method is an interaction-based model for signed networks based on using ants
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(a) Bitcoin-Alpha Local Clustering. (b) Bitcoin-OTC Local Clustering. (c) Epinions Local Clustering.

(d) Bitcoin-Alpha Degree Dist. (e) Bitcoin-OTC Degree Dist. (f) Epinions Degree Dist.

Figure 4.1: Visualization of the degree distributions and local clustering coefficients.

to lay pheromone on edges [114].

• Evo07: This method is an evolutionary model for signed networks that had a “friendliness”

index that controls the probability of positive or negative links and also a parameter that

controls the maximum amount of unbalance [115].

Note that for Ants14, we perform a grid search on the parameter space for its 6 parameters

according to the values reported in [114]. Similarly, for Evo07, a grid search was performed for

the two parameters.

The next two baselines are built upon two popular unsigned generative models. We first convert

the network to unsigned by ignoring the links, run the baseline model, and then randomly assign

signs to the edges such that the global sign distribution is maintained using [.

• STCL: This method is from the unsigned TCL model [102].

• SKron: This method is from the unsigned Kronecker Product model [99].

74



75

Table 4.3: Positive/negative link sign distribution.

Links Positive Real Ants14 Evo07 BSCL
Bitcoin-Alpha 0.915 0.741 0.917 0.912
Bitcoin-OTC 0.867 0.740 0.869 0.860
Epinions 0.830 0.930 0.830 0.808

Absolute Difference 0.401 0.004 0.031

Table 4.4: Proportion of triangles balanced in generated signed networks.

Percent Balanced Real STCL/SKron Ants14 Evo07 BSCL
Bitcoin-Alpha 0.862 0.786 0.787 0.750 0.802
Bitcoin-OTC 0.869 0.698 0.817 0.677 0.752
Epinions 0.892 0.644 0.939 0.639 0.748

Absolute Difference 0.484 0.174 0.557 0.321

The results of the properties that are in common with unsigned networks (i.e., the degree

distribution and the local clustering coefficient) can be can be seen in Figure 4.1. We see that

BSCL and STCL both perform near identically on the degree distribution as they are both based

on the Transitive Chung-Lu model and therefore can very closely maintain the degree distribution.

However, it can be seen that the two signed network baselines, Ants14 and Evo07, perform very

poorly and do not even appear to follow a power-law distribution. We mention that SKron is not

able to exactly model the degree distribution, but does not perform as poorly as the two existing

signed network baselines. For the two existing signed network models similar poor findings can

be found for the local clustering coefficient. Our proposed model BSCL along with STCL perform

the best. The SKron model has some clustering, but not near that of the original input network.

In Table 4.3, we show the positive/negative link ratio; while in Table 4.4, we present the

proportion balance/unbalance triangles. We make a comparison to the two existing signed network

methods, and also then follow with a comparison of BSCL to STCL and SKron which are the two

modified unsigned network models.

In Bitcoin-Alpha dataset, our model BSCL is able to achieve the closest proportion of balance

triangles. Then in the Bitcoin-OTC dataset, the Ants14 performs the best in terms of the proportion

of balance in the network. We further show a fine-grained comparison by separating the four types

of triads on the Bitcoin-Alpha, Bitcoin-OTC, and Epinions datasets in Table 4.5, Table 4.6, and
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Table 4.5: Distribution of signed triangle types in the Bitcoin-Alpha dataset.

Triad Type Real STCL/SKron Ants14 Evo07 BSCL
{+,+,+} 0.793 0.766 0.446 0.750 0.804
{+,+,-} 0.134 0.213 0.200 0.250 0.174
{+,-,-} 0.069 0.020 0.341 0.000 0.021
{-,-,-} 0.004 0.001 0.013 0.000 0.001

Absolute Difference 0.158 0.694 0.232 0.102

Table 4.6: Distribution of signed triangle types in the Bitcoin-OTC dataset.

Triad Type Real STCL/SKron Ants14 Evo07 BSCL
{+,+,+} 0.724 0.652 0.445 0.613 0.707
{+,+,-} 0.122 0.300 0.170 0.323 0.246
{+,-,-} 0.145 0.046 0.372 0.064 0.045
{-,-,-} 0.009 0.002 0.013 0.000 0.002

Absolute Difference 0.356 0.558 0.401 0.248

Table 4.7: Distribution of signed triangle types in the Epinions dataset.

Triad Type Real STCL/SKron Ants14 Evo07 BSCL
{+,+,+} 0.808 0.572 0.929 0.587 0.698
{+,+,-} 0.096 0.351 0.061 0.349 0.250
{+,-,-} 0.084 0.072 0.010 0.052 0.050
{-,-,-} 0.013 0.005 0.000 0.012 0.002

Absolute Difference 0.511 0.243 0.507 0.309

Table 4.7, respectively. We notice that Ants14 achieves this by drastically changing the distribution

among the four triangle types. However, our model performs the best overall in terms of the triangle

distribution. Similarly we notice a drastically low overall clustering in the Ants14 output networks

as seen in the local clustering coefficient plot in Figure 4.1(b). Furthermore, although the Ants14

method more closely resembles the percentage of triangles being balanced across the three signed

networks (having a smaller absolute difference than BSCL), we can observe that this comes at a

tradeoff of having a very inconsistent percentage of links being positive in the network as compared

to the input signed network, which can be seen in the absolute difference row of Table 4.3. Note

that in both of the Bitcoin datasets, our model BSCL is able to achieve better performance than

the baselines in terms of the triangle distributions, while only at the expense of sacrificing < 1%

in terms of matching the correct positive link percentage, [, of the input networks. The results are
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similar in the Epinions dataset.

When comparingBSCLwith STCLandSKronwemention that by design these other twomodels

will always have the exact percentage of positive links and their expected triangle distribution can

be calculated as:
(
[[[

)
,
(
3× ([[(1−[))

)
,
(
3× ([(1−[) (1−[))

)
, and

(
(1−[) (1−[) (1−[)

)
for the

{+,+,+}, {+,+,-}, {+,-,-}, and {-,-,-} triangle types, respectively. We can observe that in terms of

the absolute difference between the percentages in each of these triangle types, the BSCL method

performs much better having an absolute difference of only 0.248 in the Bitcoin-OTC dataset while

the straight-forward modification to the unsigned network models of maintaining the positive link

percentage correctly results in an absolute difference of 0.356. Similarly, when looking at the

percentage of triangles adhering to balance theory across the three signed network datasets BSCL

has a value of only 0.321 while STCL and SKron share an absolute difference of 0.484.

Overall we can see that the Ants14 model favors capturing the percentage of triangles adhering

to balance theory, but at the sacrifice of the triangle distribution (in regards to the triangle edge

signs) and performing just as poorly at maintaining the positive/negative link ratio. On the other

hand, the Evo07 model is able to correctly maintain the positive/negative link ratio, but struggles

to maintain reasonable percentage of balanced triangles when examining across the three datasets.

Our model BSCL overall outperforms the two previous signed network models as seen in the

Tables and Figures. Furthermore, we can see BSCL out performs STCL and SKron in terms of

maintaining the percentage of balanced triangles and triangle distribution. We note that BSCL

finds this improvement in other signed network properties while only losing about 1% on average

across each the three datasets in maintaining the positive/negative link ratio.

4.1.6.2 Parameter Learning Experiment

The second set of experiments are designed to test the learning algorithm we have proposed in

determining appropriate parameters for BSCL. Here we first utilized natural and intuitive heuristics

for setting the parameter values of U and V to further evaluate the effectiveness of our parameter

learning algorithms. More specifically, the value of [ (i.e., the real network’s percentage of positive
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Table 4.8: Absolute difference from the generated networks to the real signed networks averaged
over the three datasets for each respective property.

BSCL
(learning U & V)

BSCL
(U = [ & V = Δ�)

Sign
Distribution 0.031 0.040

Proportion
Balanced Triangles 0.107 0.164

Distribution
Triangle Types 0.220 0.351

links) is used as a natural choice for the value ofU (i.e., the percentage of the time a randomly inserted

edge is positive) when not utilizing the proposed learning algorithm described in Section 4.1.4 for

BSCL. Similarly, the value Δ� (i.e., the real network’s percentage of triangles that are balanced)

can be chosen as the value for V (i.e., the percentage of time we explicitly close a wedge into a

balanced triangle) if we were to not use our proposed learning algorithm. Table 4.8 contains the

performance comparison (in relation to the link sign distribution, proportion of triangles balanced,

and distribution of triangle types) between the proposed parameter learning algorithms selected

values against the above mentioned heuristically picked values for U and V. Note that these absolute

difference values are averaged across the three real-world signed networks. We can observe that

in all three properties our parameter learning algorithm significantly out performs the most natural

heuristically picked values and thus providing further evidence our model can learn parameters to

more accurately generate synthetic variants of the real input signed network.

For a more detailed analysis we also perform a grid search across a reasonable area of the

parameter space for U and V to obtain optimal parameters. Then we compare the performance of

the learnt parameters and the searched optimal parameters to demonstrate the ability of the proposed

parameter learning algorithm. We only present the results in Figures 6.4 in terms of percentage

of balanced triangles and positive/negative link ratio for the Bitcion Alpha dataset, since we have

similar observations for Bitcion OTC and Epinions with other settings. Note that the z-axis is the

absolute difference away from the true input networks value (where lower is better). The “stars”
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(a) Bitcoin-Alpha % balanced triangles results. (b) Bitcoin-Alpha positive/negative ratio results.

Figure 4.2: BSCL parameter learning analysis.

in the figures are the coordinates along the x- and y-axis for the learned parameter. From the

figures, it looks convincing that indeed our parameter learning algorithm is able to find appropriate

parameters for the input network.

4.2 Balance in Signed Bipartite Networks

Signed bipartite networks have begun to appearmore commonly especially online. For example,

many online rating systems, such as Netflix and YouTube, adopt “thumbs-up" or “thumbs-down"

rating that can also be formulated as signed bipartite networks. Another real-world example is

from the political science domain, more specifically, we observe that indeed the United States

Congress is inherently a signed bipartite network formed from the representatives and the bills

they have voted on (where the "Yea" and "Nay" votes can be represented as positive and negative

links, respectively) [116, 117], which we present in more detail in this specific application later in

Section 6.2).

Although there have been works focused on unsigned bipartite networks, these methods are

lacking the capability to handle the further complexities of negative links. Similarly, methods

developed for unipartite signed networks might not be applicable when having the two node

types or limiting the possible connections in the network. For example, a fundamental theory

that explains the social phenomena of the link structure in signed network analysis is balance

theory [29, 30]. It suggests that a cycle in signed networks with an even number of negative links
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Table 4.9: Notations regarding signed bipartite networks.

Notations Descriptions
B Undirected signed bidjacency matrix
P� Adjacency matrix for theU�-projection network
P( Adjacency matrix for theU(-projection network
A Adjacency matrix constructed from B,P�, and P(
U Low-dimensional representation of nodes inU�
V Low-dimensional representation of nodes inU(

is balanced, which is typically stated as “a friend of my friend is my friend” while an “enemy

of my friend is my enemy”. In unipartite signed networks balance theory has been extensively

applied on signed triangles (i.e., the smallest undirected cycle) across various real-world networks

to obtain better performance across modeling [115, 114, 118], measuring [51, 119, 120, 65], and

mining applications [23, 61, 53, 121]. However, in signed bipartite networks it is fundamentally

impossible to have any triangles while having the two different types of nodes. Therefore it is

important to understand balance theory in signed bipartite networks and its possibility to enhance

applications, due to the prevalence of signed bipartite networks. Thus, dedicated efforts are desired

for signed bipartite networks in additional to unipartite signed networks and unsigned bipartite

networks. Here we present a comprehensive analysis and validation of balance theory using signed

butterflies and then show their effectiveness on improving the performance of link sign prediction

in signed bipartite networks. Furthermore, the empirical findings in sign prediction paves the way

for improvements in other signed bipartite network analysis tasks.

4.2.1 Balance Theory in Signed Bipartite Networks

In this section, we will introduce the signed bipartite network datasets we have collected for this

study. Thereafter we discuss balance theory from a general signed network perspective, then we

validate its applicability in signed bipartite networks, and perform a preliminary analysis on our

datasets; but first, we introduce the definitions and notations.

Consider an undirected signed bipartite network, G = (U�,U(, E+, E−), where U� =

80



81

Table 4.10: Statistics on signed bipartite networks.

Bonanza U.S. Senate U.S. House
=� = |U� | 7,919 1,056 1,281
=( = |U( | 1,973 145 515
|E | = |E+ | + |E− | 36,543 27,083 114,378
% Links Positive 97.98% 55.31% 53.96%
% Links Negative 2.02% 44.69% 46.04%
Density of B 2.339 × 10−3 0.1769 0.1734

{11, 12, . . . , 1=� } and U( = {B1, B2, . . . , B=( } represent two mutually exclusive sets of homo-

geneous nodes with =� and =( representing the number of nodes for each set, respectively.

E+ ⊂ U� × U( and E− ⊂ U� × U( represent the sets of positive and negative edges, re-

spectively, between the two sets of nodesU� andU(. We let E = E+ ∪ E− be the set of all edges

where E+ ∩ E− = ∅, in other words, two nodes cannot have both a positive and negative edge

between them. We use B ∈ R=�×=( to represent the undirected signed bipartite biadjacency matrix

of G, where B8 9 = 1,−1, or 0, when there exists a positive, negative, or no link between 18 and B 9 .

We further summarize the major notations used throughout this section in Table 6.4.

4.2.1.1 Signed Bipartite Network Datasets

We have collected three signed bipartite networks for this study. The first signed bipartite network

is from the e-commerce website Bonanza4. Bonanza is similar to eBay5 and AmazonMarketplace6

in that users create an account for which they can buy or sell various goods. After a buyer purchases

a product from a seller, both are able to provide a rating about the other along with a short comment.

At the time of collection, Bonanza was using a rating scale of “Positive”, “Neutral”, and “Negative”

to rate another user after a transaction. For representing the buyers and sellers, we useU� andU(,

respectively.

The next two datasets are representing the role call votes combined from the 1st to 10th United

4http://www.bonanza.com
5http://www.ebay.com
6http://www.amazon.com
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States Congress. More specifically, we collected two separate datasets7; one for the U.S. Senate

and the other for the U.S. House of Representatives (which we will refer to as U.S. House). In

each of these datasets we represent the bills that were voted by the set U� and the senators or

representatives by U(. If a congressperson voted “Yea” or “Nay” for the bill, then we represent

these as positive or negative links between them, respectively, and leave the connection missing

otherwise.

Note that for simplicity throughout the rest of this section we will refer to the nodes in U� as

“buyers” and those in U( as “sellers”. In Table 4.10 we report some basic statistics of our three

collected datasets. We note that in the Bonanza dataset there is a significant imbalance between the

number of positive and negative links as compared to the two U.S. Congress datasets. Although

these datasets are representing vastly different real-world social structures, we next investigate

balance theory [30, 29] to the signed bipartite network setting.

4.2.1.2 Signed Butterflies in Signed Bipartite Networks

In signed networks one of the most fundamentally studied social theories is balance theory [30, 29],

which discusses the settings in signed networks that are socially “balanced” (i.e., stable), and those

that are more likely to change (to be balanced) due to the social tensions involved in maintaining

“unbalanced” and seemingly unnatural connections. In recent signed network analysis works

balance theory is usually investigated and then applied towards many tasks [74, 2, 55], but almost

always in the form of triangles (or cycles of length 3) in a unipartite signed network. As seen in

Figure 2.2, there are four possible configurations between the three nodes. We can further observe

in Figure 2.2 that triangles (a) and (b) are balanced (due to having an even number of negative

links), while (c) and (d) are unbalanced. Nevertheless, as previously mentioned, since there are no

triangles in signed bipartite networks and they have two different node types, it is unknown whether

balance theory is still applicable towards a bipartite setting.

Next, we will therefore introduce how we plan to extend the usage of balance theory to the

7https://www.govtrack.us/data/
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Figure 4.3: Undirected signed butterfly isomorphism classes.

smallest signed cycles (i.e., butterflies) in undirected signed bipartite networks. Thereafter we

investigate and present our initial analysis of these signed butterflies in three real-world signed

bipartite networks.

4.2.1.3 Signed Butterfly Isomorphism Classes

In unsigned bipartite networks, one commonly investigated structure is that of a “butterfly” [122,

123], which is a cycle of length 4. More formally, a butterfly is the simplest cohesive higher-order

structure and also a complete biclique. Thus, this provides the most natural structure to investigate

as a possible extension for balance theory in signed bipartite networks.

Just as there are different types of signed triangles, there are different types of signed butterflies.

In Figure 4.3 we present the 7 non-isomorphic undirected signed butterflies. Note that there are

five that adhere to balance theory while only two are categorized as unbalanced. We use the

notation (∗, ∗, ∗, ∗) to denote a signed butterfly isomorphism class that represents the links between

the buyers and sellers (18, B 9 , 1: , B;) (in that order with the last sign connecting B; and 18). The

simplest of types are (+, +, +, +) and (−,−,−,−), which denote the classes having all positive or all

negative links, respectively, and both are balanced due to having an even number of negative links

(and can be seen in Figures 4.3(A) and 4.3(E), respectively). We can interpret the (+,+,+,+) class as

the situations where two buyers have bought from the same two sellers and the sentiment amongst

them across the four purchases was positive. Next, we have (+, +, +,−) and (+,−,−,−), which
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are the two unbalanced classes of signed butterflies (since they have an odd number of negative

links). In Figure 4.3(F) we have the signed butterfly isomorphism class that encompasses all the

signed butterflies with a single negative link. We can observe that no matter where this single

negative link is placed, we always have one buyer with two positive links, one buyer with a positive

and negative link, and similar structure for the two sellers. The isomorphism class (+,−,−,−)

can be seen as the complement (if defined as swapping link signs in a signed network) of the

class (+, +, +,−) and defined in a similar way, but with swapping the positive and negative links

in the definition. This leaves the signed butterflies having two positive and two negative links, of

which we have three isomorphism classes. In Figure 4.3(D) we see the class (+,−, +,−) is used to

represent signed butterflies where all buyers and sellers have one positive and one negative link in

their cycle. When one of the buyers has two positive links, while the other buyer has two positive

links, we observe in Figure 4.3(B) that both sellers have a single positive and single negative link,

and define the isomorphism class of (+,−,−, +). Finally, the last type of signed butterfly has both

buyers connected positively to one seller, and negatively to the other, which we represent as the

class (+, +,−,−) shown in Figure 4.3(C).

4.2.1.4 Signed Butterfly Analysis

In Table 4.11 we report our analysis after counting the number of signed butterflies for each

isomorphism class as shown in Figure 4.3. We further calculated the percentage each isomorphism

class takes up of the total signed butterfly count in each dataset (given in column “%”). Next, we

analyzed the significance of these signed butterflies being found in signed bipartite networks and

wanted to test whether they are overrepresented or underrepresented. Remember, balance theory

would suggest that balanced isomorphism classes (A) through (E) should appear frequently while

(F) and (G) (being unbalanced) should appear less frequently. To quantify this, extending the

approach taken in [2], we calculate “�%” as the expected percentage of total signed butterflies to

fall into the given isomorphism class when randomly reassigning the positive and negative signs to

the signed bipartite network. In other words, for example, “�%” for the isomorphism class
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Table 4.11: Signed butterfly statistics on signed bipartite networks.

Signed Butterfly
Isomorphism Classes

Bonanza U.S. Senate U.S. House of
Representatives

Count % �% B Count % �% B Count % �% B

(�) (+, +, +, +) 2554388 0.986 0.922 386 13404168 0.262 0.094 4142 227660420 0.244 0.085 17459
(�) (+,−,−, +) 3830 0.001 7.8e-04 40 5595440 0.110 0.122 -277 103731010 0.111 0.123 -1137
(�) (+, +,−,−) 726 2.8e-04 7.8e-04 -29 9404006 0.184 0.122 1349 173875858 0.186 0.123 5843
(�) (+,−, +,−) 456 1.7e-04 7.8e-04 -35 5537080 0.108 0.122 -302 101409932 0.109 0.123 -1368
(�) (−,−,−,−) 20 7.7e-06 1.7e-07 30 6815324 0.133 0.040 3414 137478104 0.147 0.045 15104
Balanced 2559420 0.988 0.924 40756018 0.797 0.500 744155324 0.797 0.500
(�) (+, +, +,−) 30685 0.012 0.076 -390 6225745 0.122 0.302 -2811 109763190 0.118 0.289 -11565
(�) (+,−,−,−) 100 3.9e-05 3.2e-05 2 4118075 0.081 0.197 -2099 79053742 0.085 0.210 -9430
Unbalanced 30785 0.012 0.076 10343820 0.203 0.500 188816932 0.203 0.500
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(+,−,−,−) is calculated by
(4
1
) (
( |E+ |/|E |) × (|E− |/|E |)3

)
, since there are 4 permutations of

having a single positive link in a signed butterfly in class (+,−,−,−) and the probability of each

link appearing in a signed network with randomly assigned link signs would be the independent

probabilities of having a single positive link (i.e., |E+ |/|E |) and three negative links (i.e., |E− |/|E |).

Finally, the value “B” is used to denote the number of standard deviations the actual count differs

from our calculated expected number (based on “�%”) for each signed butterfly type and just

as in [2], a positive (or negative) “B” value signifies appearing significantly more (or less) than

expected.

We first observe that the large majority of signed butterflies in our three signed bipartite

networks are indeed balanced. Furthermore, they are significantly more balanced than expected

based on the link sign ratio in the given network (i.e., comparing columns “%” and �%). The

second observation is that all unbalanced signed butterflies across the three datasets are significantly

underrepresented, except for the (+,−,−,−) butterflies in Bonanza, where it shows a minimal over

representation. Similarly, across all datasets the (+, +, +, +) and (−,−,−,−) signed butterflies are

significantly overrepresented, further strengthening the applicability of balance theory in signed

bipartite networks. However, the isomorphism classes involving two positive and two negative links

appear to not always be found overrepresented. For example, the class where all buyers and sellers

have one positive and one negative link, i.e., (+,−, +,−), is less commonly found than expected

across all three datasets.

In summary, our findings suggest that: 1) we can use signed butterflies to extend balance theory

for signed bipartite networks; and 2) signed bipartite networks adhere to balance theory when

defined in terms of signed butterflies, thus making them applicable to advance numerous tasks in

signed bipartite networks.

4.2.1.5 Signed Caterpillars in Bipartite Networks

A “signed caterpillar” we define as paths of length 3 that are missing just one link to becoming

a signed butterfly. Therefore, a signed caterpillar can take on one of eight different forms, since
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it is composed of three links being ether positive or negative. Note that all caterpillar types have

the potential to be transformed into a signed butterfly (i.e., closed into a cycle of length 4) that is

either balanced or unbalanced. If a signed caterpillar contains an even number of negative links,

we refer this as a “balanced path” and balance theory would suggest a positive (or negative) link

transforming it into a balanced (or unbalanced) signed butterfly. Similarly, we define an a signed

caterpillar as an “unbalanced path” when having an odd number of negative links and balance

theory would suggest a negative (or positive) link to close into a balanced (or unbalanced) signed

butterfly.

4.2.2 Sign Prediction for Signed Bipartite Networks

With the aforementioned definitions and notations, we formally define the problemof sign prediction

in undirected signed bipartite networks as the following:

Given an undirected signed bipartite network G = (U�,U(, E+, E−) represented as a bi-

adjacency matrix B ∈ R|U� |×|U( |, we seek to predict the signs of no link pairs (18, B 9 ) ∈

{U� ×U(}\{E+ ∪ E−}.

Sign prediction in signed networks has been previously studied [61, 124, 125, 126, 4]. However,

in the signed bipartite setting, many of these methods are no longer applicable, since there are no

triangles. In Section 4.2.1.2, we validated that the large majority of signed butterflies in signed

bipartite networks are balanced. Methods for predicting link signs in unipartite signed networks

can be categorized into three main groups: 1) supervised methods; 2) low-rank approximation

methods; and 3) propagation based methods. Therefore we develop a representative sign prediction

method specific to signed bipartite networks from each group. More specifically, we propose: 1)

a supervised classification method that uses signed caterpillars/butterflies; 2) extend a low-rank

modeling method to ensure the predicted signs favor creating more balanced signed butterflies; and

3) a random walk based approach that integrates one-mode projection networks for U� and U(

constructed using balance theory.
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4.2.2.1 Signed Caterpillars Based Classifier

One common approach towards predicting links or link signs in both signed and unsigned networks

is to frame the task in terms of a supervised classification problem [4, 61, 127, 128]. Here we

extend the idea to the signed bipartite setting by formulating the problem of predicting the sign

between a buyer 18 and a seller B 9 by extracting features from either the individuals (i.e., their

positive and negative degrees) or local neighborhood features based on balance theory (i.e., signed

caterpillars).

To train our model we construct a training dataset consisting of known signed links (between

a buyer and seller). Then, after having a trained model, we can extrapolate what we learned

from the training data to predict a positive or negative sign for an unknown buyer and seller pair.

More specifically, we use a logistic regression model following the prediction on directed signed

unipartite networks work in [4].

Feature Extraction. The two different sets of features we evaluate are either based on the two

nodes degree distributions or information about how many signed caterpillars they are the two

endpoints of (i.e., they would be the buyer and seller connection transforming the signed caterpillar

to a balanced or unbalanced signed butterfly). Thus, the feature vector x3
8 9

for the pair (18, B 9 )

includes the the positive and negative degrees for both 18 and B 9 . In comparison, xB2
8 9

contains

the counts for each of the 8 possible signed caterpillars that have 18 and B8 as the endpoints.

The expectation is that the features xB2
8 9

will be more informative than those of x3
8 9

because they

would provide a vast amount of informaiton as to whether their link sign is likely to be positive or

negative according to balance theory when considering the types of signed butterflies that would

be constructed. This is in comparison to only using the degrees in a method similar in nature to

a signed preferential attachment model with x3 . We denote the supervised classifiers that use x3
8 9

and xB2
8 9

as SCd and SCsc, respectively.
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4.2.2.2 Low-Rank Sign Prediction

In recent years the low-rank matrix factorization approaches have been gaining popularity for

numerous applications involving link related network predictions [129, 130, 131]. Although some

of these works have focused on signed networks [131, 132, 130], none are structured to select link

signs that would explicitly push towards more signed butterflies being balanced in signed bipartite

networks. Thus, we first introduce a basic matrix factorization approach to model the signed

bipartite network using the biadjacency matrix B. Then we introduce how we can successfully

modify this model through the inclusion of additional pairs of buyers and sellers derived from

suggested implicit signed links that would construct the most balanced signed butterflies with the

suggested link sign.

Basic Matrix Factorization Model: The set of existing edges in B are denoted in the set

E = {(18, B 9 ) |B ≠ 0}. In terms of the link sign prediction task we would like to discover two latent

matrices U = [u1, u2, . . . , u=� ] ∈ R
3×=� and V = [v1, v2, . . . , v=( ] ∈ R

3×=( of dimension 3 for

the set of buyers and sellers, respectively, to solve the following optimization problem:

min
U,V

∑
(18,B 9 )∈E

max
(
0, 1 − B8 9 (u>8 v 9 )

)2
+ _

(
|U|2� + |V|

2
�

)
(4.11)

where u>
8

v 9 is used to model the link sign between buyer 18 to seller B 9 . Note that when the real

link sign (i.e., B8 9 ) and the predicted link sign (i.e.,u>
8

v 9 ) are of the same sign (i.e., both positive

or both negative) then B8 9 (u>8 v 9 ) is positive, and if over 1 then there is no loss. However, when

the real and predicted values have differing signs then there is a higher loss value associated to

drive the minimization during the training process. Following the work in [131] we use Stochastic

Gradient Descent (SGD) to minimize the objective in Eq. (4.11).

This allows us to then utilize the learned low-dimensional representations for each buyer and

seller to predict the sign of unknown buyer and seller pairs. However, although this model is effec-

tively learning a representation that can accurately predict the existing links, it does not explicitly

control whether the signs of non-existing links are actually going to predict link signs that adhere

to balance theory (i.e., having more signed butterflies balanced than unbalanced). Therefore we
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denote this method simply as MF. Next, we will present an extension to this basic framework to

further ensure more signed butterflies between the missing links are balanced.

Matrix Factorization with Balance Theory: As previously discussed, the aforementioned

basic matrix factorization approach given in Eq. (4.11) does not explicitly enforce the non-existing

link signs to favor balanced relationships. Instead it can only focus on learning low-dimensional

representations for each buyer and seller such that the model minimizes the error on predicting the

existing link signs. The approach we have selected is to further encourage the model learning link

signs for buyer and seller pairs that currently do not exist in the signed bipartite network, but would

convert many signed caterpillars into balanced signed butterflies if they were to exist.

The first step is calculating whether balance theory would suggest a positive or negative link

for each buyer and seller pair (18,B 9 ), that currently do not have a link between them, based on the

types of signed caterpillars they’re jointly involved in and the endpoints of.

Theorem 3. Given a signed undirected biadjacency matrix B, then the matrix Ŝ = BB)B � B is

such that B86=(Ŝ8 9 ) suggests the sign of a non-existent link in B that would result in a net gain

of |Ŝ| additional balanced signed butterflies created (after subtracting the number of potential

unbalanced signed butterflies created simultaneously) if the suggested signed link were to be added

between 18 and B 9 , where we define B as B8 9 = 0 if B8 9 ≠ 0 and B8 9 = 1 when B8 9 = 0.

Proof. If we let A =

[
0 B

B) 0

]
be the adjacency matrix in R|U|×|U|. We can observe that A3 =[

0 BB)B
B)BB) 0

]
. We note that in [133] it has been shown A; = M;

�
−M;

*
, where M;

�
,M;

*
∈

R|U|×|U| store the number of balanced and unbalanced paths of length ;, respectively, between all

pairs of nodes in a signed network represented asA. Thus, sinceA3
8 9
=

[
BB)B

]
8 9
for some buyer 18

and seller B 9 , we observe that this represents the number of of balanced paths of length 3 subtracted

by the number of unbalanced paths of length 3. By definition of a signed caterpillar, if one is a

balanced path, then it would suggest a positive link to close to be a balanced signed butterfly, but

if it was formed by an unbalanced path it would require the closing link to be negative to form a

balanced butterfly. Therefore, it follows that B86=(
[
BB)B

]
) = B86=

(
M;
�
−M;

*

)
indeed represents
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the sign that would promote the creation of more balanced signed butterflies, and similarly for

the net gain of balanced butterflies being formed equaling the absolute value of their difference

(8.4, |M;
�
−M;

*
|). It is then easy to extend to only the buyer and seller pairs 18 and B 9 in

[
BB)B

]
�B

after taking the element-wise product with B that zeros out the pairs that have an existing link. �

Note that Ŝ can also be calculated (sometimes more efficiently) using the following:

Ŝ8 9 =


[
BB>B

]
8 9

if B8 9 = 0

0 otherwise

to avoid using the potentially very dense matrix B for sparse signed bipartite networks.

Using Theorem 3 we can construct additional sets E+
8
and E−

8
of implicit positive and negative

links, respectively, suggested by balance theory that would create the highest net gain of balanced

signed butterflies in the signed bipartite network. We define these sets as follows:

Ê+8 = {(18, B 9 ) | Ŝ8 9 > 0 and Ŝ8 9 ∈ C>?: (Ŝ)}

Ê−8 = {(18, B 9 ) | Ŝ8 9 < 0 and Ŝ8 9 ∈ 1>CC><: (Ŝ)} (4.12)

where C>?: (Ŝ) and 1>CC><: (Ŝ) are used to denote the : largest and smallest values, respectively,

in Ŝ.

We formulate our object that incorporates balance theory as follows:

min
U,V

∑
(18,B 9 )∈E

max
(
0, 1 − B8 9 (u>8 v 9 )

)2
+ _

(
|U|2� + |V|

2
�

)
+ U

∑
(18,B 9 )∈Ê+8

max
(
0, 1 − Ŝ8 9 (u>8 v 9 )

)2
+ V

∑
(18,B 9 )∈Ê−8

max
(
0, 1 − Ŝ8 9 (u>8 v 9 )

)2
(4.13)

where U and V are used to control the level at which we incorporate the modeling of signed

butterflies through the inclusion of the implicit positive and negative links, respectively. We again

note that these implicit positive and negative links are implied by balance theory by using Ŝ, which

effectively counts for each node pair (18, B 9 ) what the net gain of total balanced signed butterflies
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would be once including the link with the suggested sign (according to the majority count of signed

caterpillars being of balanced or unbalanced paths of length 3). We denote this matrix factorization

method using balance theory as MFwBT.

4.2.2.3 RandomWalk Based Sign Prediction

Typical propagation based methods, such as the random walk with restart [44] have seen many

variants and been applied to solve link prediction and ranking related tasks in unsigned unipartite

networks. However, signed bipartite networks pose multiple challenges that prevent them from

directly using the typical methods. One such problem is that bipartite networks do not have a

stationary distribution and thus do not converge [134]. Onewayof handling this problem in unsigned

bipartite networks is considered a “lazy” random walk, where the walker will probabilistically stay

at the same node. We will later use this method as a comparison against our proposed random

walk based method. Furthermore as seen in previous sign prediction methods for unipartite

signed networks, balance theory is the key component towards obtaining higher performance when

predicting the sign of unknown links. Thus, due to our analysis of the signed butterflies, indeed

signed bipartite networks are showing high levels of balance and therefore we should also be using

balance theory to guide the random walk based method for signed bipartite networks towards a

solution having more balanced relations.

Here we present a random walk based approach that integrates the U� and U( one-mode

projection adjacency matrices, which are constructed using balance theory, to aid in handling the

issues faced with the bipartite setting, and develop a signed randomwalk based approach to not only

allow a proper transition matrix, but to furthermore have the random walker be promoting balance

theory. The first step will be the construction of a signed adjacency matrix A based on balance

theory, followed by defining a signed transition matrix that can further promote and propagate

balanced relations throughout the network.

Constructing the one-mode adjacency matrices: In unsigned bipartite network analysis one-

mode projections are typically used for both analysis and aiding to solve various tasks [135, 136,
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Figure 4.4: High-level overview of how we construct A from B,P( and P�.

137]. They are constructed by creating a projection network that creates implicit connections

between nodes of the same type. In terms of our definitions, two one-mode projection networks

can be performed, one that connects the buyers in U� together amongst themselves and the other

for the sellers inU( by constructing seller to seller links; these relations can be represented in the

adjacency matrices P� ∈ R|U� |×|U� | and P( ∈ R|U( |×|U( |. A visual example can be seen in

Figure 4.4 when going from B to P( and P� from left to right through the first arrow.

We note that there is not just one way to discover these implicit connections between pairs of

users in the same set, and in fact there are many possible methods for one-mode projections [136,

137]. It has also been studied that using different methods to construct the projection networks

can cause drastic changes to the usability and performance [138]. In wanting to carefully construct

these projection networks, we choose to utilize balance theory in the form of signed triangles. Next

we will discuss the formation of the adjacency matrix P�, and a similar process can be followed

for constructing P( (although we only discuss P� here).

Based on the ideas of common neighbor similarity in unsigned networks, we will possibly

connect two buyers 18 and 1 9 if they have at least one seller in common they are linked to. Let the

number of common sellers that 18 and 1 9 agree upon (in terms of link sign) be denoted as =B�
8 9
.

Similarly let =B�
8 9

denote the number of sellers these two buyers disagree on in terms of link sign.

Then we define P�8 9 = P� 98 = =B�8 9 − =B
�
8 9
, which we can see is taking the number of sellers they

agree upon in terms of signed connections (i.e., both either negatively or positively connected to

that seller) and subtracting the number of sellers they disagree on (i.e., the sellers where one buyer
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has a positive link while the second buyer has a negative connection with that seller). We can now

further see the connection between P�8 9 and the common neighbor similarity method. It is easy

to verify that out of all the triangles formed between 18, 1 9 , and the sellers B: they are commonly

linked to, that using the links B8: , B 9 : and P�8 9 , we see that the majority will adhere to balance

theory. This is by design since if =0�
8 9
> =0�

8 9
then B86=(P�8 9 ) is positive and closing the =B�

8 9

triangles to be balanced, while the lesser number of =B�
8 9

will close to be unbalanced. Note that a

similar argument can be given when =B�
8 9
< =B�

8 9
and if =B�

8 9
= =B�

8 9
then P�8 9 = 0 and no signed

triangles are formed. Ultimately, we construct a parameterized version as follows:

P�8 9 =


0 X= < =B
�
8 9
− =B�

8 9
< X?

=B�
8 9
− =B�

8 9
otherwise

(4.14)

where X? and X= are used to define thresholds for the necessary magnitude of =B�
8 9
− =B�

8 9
to have

a non-zero value in P�8 9 . This allows us to ignore adding smaller values (e.g., 2), since in some

settings having such a small value might not be very significant and thus we might not want to

construct a link between 18 and 1 9 . Note that for simplicity we allow X? and X= to be shared for

constructing both P� and P(.

Performing the random walk: Now having the two projection adjacency matrices P� and P(,

we can use them to construct an adjacency matrix A ∈ R|U|×|U|, which will be the unibipartite

signed networkwe performour randomwalk on, whereU = {11, . . . 1=� , B1, . . . B=( }. In Figure 4.4

we show the high-level intuition of how to construct A. First we denote B̂ as the row normalized

biadjacency matrix where B̂8 9 = B8 9/
∑
:

|B8: |. We similarly construct row normalized adjacency

matrices P̂� and P̂(. Now we can formulate A as follows:

A =


P̂� lB̂

lB̂) P̂(

 (4.15)

where l is a parameter that can be used to bias the random walker to favor the real links in our

signed bipartite network as compared to the implicit links we obtained through the U� and U(

one-mode projection networks. Next we construct a similar row normalized adjacency matrix Â

where Â8 9 = A8 9/
∑
:

|A8: |.
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Finally, we utilize Â in a random walk propagation model where we define Y to be the matrix

holding the inferred link signs as follows:

Y8 9 =
∑
:

Â8:Y: 9 (4.16)

Next we describe how the above adheres to balance theory in terms of triangles of the adjacency

matrixA. This is because for some : if Â8:Y: 9 > 0 it increasesY8 9 ensuring it to be positive, which

would be a triangle consisting of either three positives, or two negatives and a positive. Similarly

when Â8:Y: 9 < 0 we are decreasing Y8 9 and encouraging it to be negative, thus also following

balance theory. The closed form solution that includes the restart capability, with probability

(1 − 2), is given to be the following:

Y = (1 − 2) (I − 2Â)−1 (4.17)

Note that each signed butterfly involving 18, B 9 , 1: , and B; in the original network B now consists

of up to
(4
3
)
triangles in Â. Thus, when we are encouraging balanced triangles here in Y this

correlates to having balanced signed butterflies in the upper right corner of Y, which is where we

obtain the link sign predictions (i.e., when predicting the sign between 18 and B 9 we have use B̂8 9′

where 9′ = (=� + 9). We denote this method as Signed Bipartite Random Walk (SBRW).

For comparison, if we set the two one-mode projection matrices to the identity matrix (i.e.,

P� = P( = I) and set l = 1 then Eq. 4.16 becomes the equation for a lazy random walk method,

which we denote as LazyRW.

4.2.3 Experiments

In this section, we empirically evaluate our proposed sign prediction methods for signed bipartite

networks that harness balance theory. We seek to answer the following: (1) Does the extended

balance theory to signed butterflies in the bipartite setting provide an increase in performance for

sign prediction? and (2) How do the proposed methods work/compare? To address these questions

we perform experiments to measure the performance for each of the proposed sign prediction
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methods across three real-world signed bipartite networks. To better understand our methods and

the contribution of balance theory, we also follow-up with a parameter sensitivity analysis for the

major parameters of our methods.

Experimental Settings: Here we discuss the settings used for our experiments on sign predic-

tion in signed bipartite networks. As previously discussed in Section 4.2.1.1 we have collected three

signed bipartite networks for this study, namely, Bonanza, U.S. Senate, and U.S. House. For our

sign prediction experiments we have randomly selected 10% of the links as test, utilized a random

5% for validation purposes of tuning the hyperparameters of our models, and the remaining 85% as

training for each of our datasets. More specifically, each method is only given access to the signed

bipartite network induced from the training links, then, for each edge in the testing set, we compare

the ground truth link sign with the link sign the specific method suggests for that undirected pair.

For evaluation we use both F1 and Area Under the receiver operating characteristic Curve (AUC),

since the positive and negative links are unbalanced especially in the Bonanza dataset. To the best

of our knowledge this is the first study of predicting link signs in signed bipartite networks; hence

other existing methods either for unipartite signed or unsigned bipartite networks are likely not

applicable. The main investigation is two-fold. First, we want to test the applicability of balance

theory (based on signed butterflies) to aid in sign prediction. Second, we want to provide insights

to guide practical usage of sign predictors with different types of signed bipartite networks. Thus,

we only provide a comparison against the methods we have presented in this dissertation.

4.2.3.1 Comparison Results

The results across our three signed bipartite networks in terms of AUC and F1 can be found

in Table 4.12 and the first observation we make is that there is not one proposed method that

outperforms the others across all the datasets.

The second observation we make is that the three methods SCsc, MFwBT, and SBRW, which

receive aid in prediction from balance theory when defined using signed butterflies, always perform

better than their respective baseline method (i.e., SCd, MF, LazyRW) that only use generic signed
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Table 4.12: Link sign prediction results in terms of (AUC,F1).

Sign Prediction
Method Bonanza U.S. Senate U.S. House

SCd (0.553 , 0.959) (0.638 , 0.654) (0.625 , 0.635)
SCsc (0.664 , 0.674) (0.812 , 0.823) (0.827 , 0.837)
MF (0.593 , 0.903) (0.792 , 0.812) (0.831 , 0.846)

MFwBT (0.608 , 0.905) (0.814 , 0.827) (0.834 , 0.848)
LazyRW (0.547 , 0.979) (0.808 , 0.821) (0.815 , 0.827)
SBRW (0.582 , 0.949) (0.836 , 0.849) (0.846 , 0.858)

network information in terms of AUC and only in two cases the F1 is worse. In the Bonanza

dataset we have the SCd and LazyRW outperforming SCsc and SBRW, respectively, in terms of

F1 (although performing worse in AUC). The reason for this is the heavy imbalance between the

positive and negative links in this dataset, more specifically, almost 98% of the links are positive,

which is generally a setting where the AUCmeasurement is preferred to understand the performance

better. Therefore we can see that to better detect the few negative links comes at the sacrifice of

misclassifying some of the positive links, which is why the F1 of SCsc and SBRW is less than

SCd and LazyRW, but comes with a significant increase in AUC. In general we observe that in

fact the usage of signed butterflies for sign prediction in signed bipartite networks provides a very

significant improvement in almost all cases. This fact suggests that we can give a positive answer to

our first question – the usage of balance theory in the form of signed butterflies for sign prediction

in signed bipartite networks indeed provides an empirically verifiable improvement.

In the U.S. Senate and U.S. House datasets, for the methods constructed based on intuitions

of how to correctly ensure more balanced signed butterflies are being created when predicting

missing link signs (i.e, SCsc, MFwBT, and SBRW), we see the low-rank model outperforms the

the supervised classifier approach, while the random walk method performs the best (for both AUC

and F1).

However, unlike the two U.S. Congress datasets, in the Bonanza dataset we actually observe the

complete opposite behavior (in terms of AUC) for the ranking of methods that utilize the signed

butterfly based balance theory. We hypothesize this is due to the heavy class imbalance between
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(a) MFwBT (AUC) (b) MFwBT (F1)

Figure 4.5: Parameter sensitivity on U and V in MFwBT on the U.S. Senate dataset.

the positive and negative links. With this imbalance the SBRWmethod might be unable to directly

handle this setting as the parameters only focus on separating real/implicit and balance/unbalance

through l and X?/X=. Futhermore, if most negative links are involved in balance relationships then

actually this would cause even more positive links to be constructed in the two one-mode projection

matrices (since two negatives would result in a positive link being created). In comparison, MFwBT

is able to more accurately control the ratio of positive to negative implicit links being used in the

training procedure (through selecting the size of both Ê+
8
and Ê−

8
) when extracting them from

investigating which links would cause the most signed caterpillars to turn into balance signed

butterflies. Also, we note that in our study we fixed U = V, but this mechanism would further allow

MFwBT to balance the contribution of implicit positive and negative links towards learning the

most effective representations. Finally, although we see a drastic improvement in terms of AUC for

the SCsc method, we also observe this comes at great cost to the F1 measure, and thus this method

is just discovering a trade-off of predicting more negative links. This is because we have tuned

our logistic regression model to use weights on each training example inversely proportional to the

frequency of that link type.
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(a) SBRW (AUC) (b) SBRW (F1)

Figure 4.6: Parameter sensitivity on X? and X= in SBRW on the U.S. House dataset.

4.2.3.2 Parameter Analysis

Among our three proposed sign prediction methods, the low-rank modeling with balance the-

ory (MFwBT) and random walk (SBRW) methods contain interesting hyperparameters from the

perspective of wanting to further understand balance theory in signed bipartite networks.

In our MFwBT method, we discussed that we can control the number of suggested implicit

positive and negative links from signed butteflies being included in E+
8
and E−

8
, respectively. We

performed a grid search for both the size of E+
8
and E−

8
, in the set {0,1000,10000}. We discovered

that the best setting when considering across the three datasets was having |E+
8
| = 1000 and

|E−
8
| = 10000, which we suspect is due to the class imbalance and having more explicit positive

links than negative links. Furthermore, the values of U and V were used to control the contribution

of training on both positive and negative links suggested based on signed butterflies (i.e., links in

E+
8
and E−

8
), respectively. For simplicity of our analysis we set U = V and report the performance

on our validation set for the U.S. Senate dataset in Figure 4.5. We observe that updating the

node representations using suggested signed links (that were selected since they would close the

most signed caterpillars into balanced signed butterflies) provides an improvement over not taking

balance theory into account (which is when U = V = 0), but care should be taken to not put too

much focus on these implicit links. We observe similar findings in our other datasets.

For our SBRW method, there are two main sets of parameters l and the threshold pair X?
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with X=. We varied l at a large granularity in the set {1, 2, 3, 5}, and observed there was not as

much significant difference as found in varying X? and X=, thus we selected the best on average

across the three datasets of l = 2 and fixed this value to investigate the impact of X? and X= on the

performance for predicting the missing link signs.

In Figure 4.6, for the U.S. House dataset, we varied both X? in the set {0,25,50,75,100} and

similarly for X= in the set {0,-25,-50, -75, -100}. Note that although we saw similar trends across

the three datasets, the specific magnitude of X= and X? we needed to tune separately for each dataset

due to the average magnitude of =B�
8 9

and =B�
8 9

(i.e., number of common sellers 18 and 1 9 agree

or disagree on, respectively) for constructing P� and similarly for P(, although we fixed X? and

X= for constructing both one-mode projection matrices. We observe in terms of both AUC and F1

from Figure 4.6 that indeed using these two thresholds to avoid implicit links that do not have a

significant amount of information (i.e., low magnitude of |=B�
8 9
- =B�

8 9
|) provides great improvement

to our method. It appears that implicit positive links that have low support are helpful to include.

However, it seems better to avoid inferred negative links, which we obtained based on balance

theory in the form of signed triangles between two buyers and a seller (similarly for the case of two

sellers and a buyer). Although including a few is helpful, ones that have low amount of balance

theory support from the network are better left out of the propagation process.
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CHAPTER 5

MINING NETWORKS WITH NEGATIVE LINKS

In this chapter1,2, we focus on the development of signed network mining methods. In traditional

network analysis there are two major directions for network mining, which focuses on utilizing

data mining techniques for graph data. More specifically, they can be categorized into either

link-oriented tasks and node-oriented tasks.

For signed network analysis the objective of link-oriented tasks are to reveal fine-grained

and comprehensive understanding of positive and negative links. The availability of negative

links not only enriches the existing link-oriented tasks for unsigned networks such as tie strength

prediction [62, 63, 64], but also encourages novel link-oriented tasks specific to signed networks

such as sign prediction and negative link prediction. While positive/negative link prediction [3, 4,

61, 131] and sign prediction [26, 139, 140] have been extensively explored, research on signed tie

strength prediction is rather limited. We note that the signed node relevance measures we presented

in Section 3.1 were evaluated on these link-oriented mining tasks of sign and tie-strength prediction

in signed networks.

Node-oriented mining tasks provide necessary means in order to better understand nodes in

networks. Hence, for signed networks, the major node-oriented tasks include community detection,

node classification, and node embedding, among which community detection [141, 142] is the

most extensively studied, while signed network embedding is in the earliest of stages compared

to the others. Hence, in Section 5.1 we first seek to develop state-of-the-art node embeddings by

combining signed social theories with the modern techniques of graph neural networks [143, 144,

22, 145, 75, 146] that are a class of deep learningmethods specifically designed for graph-structured

1TylerDerr, YaoMa, and JiliangTang. “SignedGraphConvolutionalNetworks.” In Proceedings
of the 18th International Conference on Data Mining (ICDM). 2018.

2Amin Javari, TylerDerr, PouyaEsmalian, JiliangTang, andKevinChen-ChuanChang. “ROSE:
Role-based Signed Network Embedding.” In Proceedings of the 29th International Conference on
The World Wide Web (WWW). 2020.
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data. Then, thereafter we seek to develop a novel transformation-based signed network embedding

methodology that is able to first transform the network based on node roles associated with directed

labeled edges to take advantage of traditional network embeddings models and then aggregate the

learned embeddings back to the original signed network.

5.1 Signed Graph Convolutional Networks

Recently there has been a large and growing interest of generalizing neural network models to

structured data, with one of the most prevalent structures being graphs (such as those found in social

media). The idea of generalizing neural network models to graph structures, namely graph neural

networks (GNNs) [143, 144, 22, 145, 75, 146, 147, 148], has lately started to becomemore developed

by overcoming the difficulties and trade-offs previously associated with fast heuristics compared to

slow andmore principled approaches. One particular type ofGNNare graph convolutional networks

(GCNs) which are modeled after the classical convolutional neural networks [70]. The first GCN

introduced for learning representations at the node level was in [22], where they utilized GCNs

for the semi-supervised node classification problem. Furthermore, learning low-dimensional node

representations have been previously proven to be useful in many network analysis tasks including

node classification [82, 77], such as link prediction [149, 150], community detection [151, 152],

and visualization [153, 149].

Previous work has mostly focused on using GCNs for unsigned graphs (or graphs consisting of

only positive links). However, especially with the ever growing popularity of online social media,

signed graphs are becoming increasingly ubiquitous. This naturally leads the question as to whether

unsigned GCNs are suitable to be used on signed networks. Unfortunately, there are many reasons

as to why unsigned GCNs are not capable of learning meaningful node representations in signed

networks. First, it is unclear how they would handle the availability of negative links in signed

networks, and furthermore, negative links invalidate some of the underlying key assumptions of

GCNs. For example, GCNs designed for unsigned networks learn a node representation using

the fundamental social theory homophily [8], which states users having connections are more
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Table 5.1: Notations in regards to signed graph convolutional networks.

Notations Descriptions
Z Low-dimensional representation of signed network G
�8 (;) (*8 (;)) The set of users that can be reached from D8

along a (un)balanced path of length ;.
�(;) (* (;)) The aggregator responsible for incorporating

the information from the set of users �8 (;) (*8 (;))
z8 The final embedding of user D8
N+
8
(N−

8
) Set of positive (negative) neighbors of D8

h�(;)
8
(h* (;)
8
) The (un)balanced representation of D8 at the ;th layer

W�(;) (W* (;)) Weight matrices used for learning how to propagate
(un)balanced information in the ;th layer

likely to be similar than those without links. Hence, the aggregation processes of GCNs use

local neighborhood information when constructing the low-dimensional embedding for each node.

However, homophily may not be applicable to signed networks [67]. Instead, in signed networks,

there are specific social theories and principles defined in the context of having both positive and

negative links. Therefore dedicated efforts are needed for redesigning GCNs specifically for signed

networks.

Although it is now clear that GCNs will need to be specifically redesigned to provide the same

fruitful performance as previously shown in unsigned networks when applied to signed networks,

there are still tremendous challenges to overcome. When designing signed GCNs the primary

challenges are: (1) how to correctly handle negative links, since their properties are inherently

different than those of positive links; and (2) how to combine the positive and negative links into a

single coherent model to learn effective node representations. Thus, we turn our attention towards

social theories specific to signed networks (similarly to how the unsigned models were constructed

using unsigned theories like homophily). More specifically, one fundamental signed network

social theory that had been developed in social psychology is balance theory [29, 30]. Thus, we

seek to harness this signed network social theory to solve these two challenges of applying graph

convolutional networks to signed graphs.
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5.1.1 Problem Statement

With the aforementioned notations and definitions presented in previous chapters and those sum-

marized in Table 6.4, we can formally define the problem of signed network embedding as follows:

Given a signed network G = (U, E+, E−) represented as an adjacency matrix A ∈ R=×=, we seek

to discover a low-dimensional vector for each node as

� : A→ Z (5.1)

where � is a learned transformation function that maps the signed network’s adjacency matrix A
to a 3-dimensional representation Z ∈ R=×3 for the = nodes of the signed network.

5.1.2 The Proposed Signed Graph Convolutional Network Framework

Graph convolutional neural networks have recently started to become more developed and have

already shown their superiority in extracting and aggregating information from graph data. Their

use cases spread over the vast field of network analysis, but one such domain that has shown to be

very influential recently is network embedding. The discovery of representative low-dimensional

features for each node in the network has previously shown to enhance many tasks from link

prediction and node classification, to community detection and visualization. However, previous

work has mostly focused on constructing GCNs for unsigned networks. Due to the inherent

differences between unsigned and signed networks, this leaves a gap that we seek to bridge with

the development of a signed graph convolutional network (SGCN).

Even with dedicated efforts towards the construction of a GCN specific to signed networks,

there are still tremendous challenges we must face and overcome. The first of which is figuring out

how we can correctly incorporate negative links during the aggregation process. We cannot simply

treat the negative links the same as positive links, since their properties and semantic meaning

vastly differ. The second challenge is how we can combine the two sets of links (i.e., positive and

negative) into a single coherent model. This combination is essential because certainly positive

and negative links interact in the network structure in complex ways and indeed are not segregated

and isolated from each other.
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In this work we propose to go to the roots of signed network analysis and utilize one of the

most fundamental and indispensable signed social theories developed in social psychology, balance

theory [30, 29]. We harness balance theory to construct a bridge to connect the gap between the

ongoing development of GCNs for unsigned networks and signed networks. In the remainder of

this section we will first briefly discuss a general GCN framework in the unsigned network setting

and discuss the relationships of this framework to the structure of signed networks. Then we

introduce balance theory and how we can use this signed social theory to correctly capture both

positive and negative links simultaneously during the aggregation process. Thereafter, we present

how to learn the parameters of our SGCN – first through the construction of an objective function

designed to effectively learn the node representations in signed networks, and finally discussing the

optimization procedure taken to optimize our proposed objective.

5.1.2.1 Unsigned Graph Convolutional Networks

Currently, most GCNs have a similar structure in that they utilize a convolutional operator that can

share weights across all locations in the graph. The benefits of this neural network structure in

graphs as compared to the cumbersome fully connected models are at least three fold: 1) it avoids

the parameter explosion associated with fully connected layers (especially when handling larger

graphs); 2) it allows for parameter sharing across the network to avoid overfitting; and 3) a single

GCN is capable of handling as input graphs of varying structures and even sizes (in terms of the

number of nodes and edges).

Typically the architecture of an unsigned GCN for learning node representations is of the form

shown in Algorithm 5.1. In the process of generating the 3>DC-dimensional embedding matrix

Z ∈ RG×3>DC , they make use of the unsigned adjacency matrix A ∈ R=×= and a feature matrix

X ∈ R=×38= , where 38= is the length of feature vector x8 for user D8. The matrices H(;) ∈ R=×3>DC

for ; ∈ {1, . . . , !} represent the hidden representations for each of the = nodes of the graph at each

layer ; of the GCN. On line 1 we set the initial representation H(0) equal to X to ease the notations

in the remainder of the algorithm. Then, on line 2 we loop updating the parameters of the GCN
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until convergent. Inside this loop, for each update iteration we propagate the graph features through

the ! layers of the GCN using the unsigned adjacency matrix A and neighborhood aggregation

function 5 (). Note that the function 5 () is where the variations of GCNs primarily differ. Finally,

after the model converges, the embedding is taken as the last layer’s representation matrix H(!) .

Limitations of unsigned GCN for signed networks: Given the above discussion on the unsigned

GCN framework, we note that in relation to signed networks this would be similar to applying the

unsigned GCN on the positive only adjacency matrix A+ where A+
8 9
= 1 if there exists a positive

link between users D8 and D 9 , and 0 otherwise (i.e., when there exists either a negative link or no

link between them). However, this would ignore the negative links.

Initially, our thoughtsmay lead to some naïve approaches of handling the negative links by either

ignoring them, treating them the same or the negation of positive links, or separately applying the

GCN framework to first the positive network, and then the negative network with finally combining

them at the end stage. However, each of these methods is either based on incorrect assumptions or

ignoring parts of the rich information awaiting to be extracted from the complex network structure

of signed networks towards the learning of an advantageous low-dimensional representation. For

example, trivially treating the negative links the same as the positive links would be an incorrect

assumption, since negative links have been shown to have different principles and semantically

represent vastly different meanings. Similarly, treating negative links as the negation of positive

links is likely an incorrect assumption [67]. This leaves the last two initial thoughts of ignoring

the negative links or applying an unsigned GCN separately on the positive only and negative only

networks, but intuitively the first choice is certainly ignoring a large amount of information, and

based on signed social theories [2, 29, 30], there exist complex relations between the positive

and negative links that if extracted, can provide fruitful results [4, 24]. Therefore, next we will

discuss one such signed social theory, balance theory [29, 30] and how we propose to harness it for

capturing both the positive and negative links coherently together during the aggregation process.
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Algorithm 5.1: Typical unsigned GCN framework.

Input: An unsigned network adjacency matrix A ∈ R=×=; a feature matrix X ∈ R=×38= ;
number of aggregation layers !; neighborhood aggregation function 5 ()

Output: Low-dimensional representation matrix Z ∈ R=×3>DC

1 H(0) ← X
2 while not convergent do
3 for ; ∈ {0, . . . , ! − 1} do
4 H(;+1) ← 5 (H(;) ,A)
5 Update GCN parameters based on ;>BB(H(!))
6 Z← H(!)

Figure 5.1: An illustration of the aggregation paths according to balanced and unbalanced paths.

5.1.2.2 Aggregation Paths with Positive and Negative Links

Balance theory dates back to the early seminal work in [29] and later generalized in [30] having

a graph theoretical foundation. In general, balance theory implies “the friend of my friend is

my friend” and “the enemy of my friend is my enemy”. The theory classifies cycles in a signed

network as being either balanced or unbalanced, where a balanced cycle consist of an even number

of negative links while a cycle having an odd number of negative links is considered unbalanced.

More details on balance theory and the four possible cycles that can be formed in a signed network

can be found in Section 2.3.3.1, where in Figure 2.2 we can see that triangles (a) and (b) are

balanced, while (c) and (d) are unbalanced. We propose to denote a balanced path as one that
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consists of an even number of negative links, and similarly an unbalanced path being one that has

an odd number of negative links. With these definitions, along with balance theory, we can see that

if we had a path of length ; from D8 to D 9 that had an even number of negative links, then balance

theory would suggest a positive link between D8 an D 9 . An example of a balanced path can be seen

in Figure 2.2 triangle (b), where the path of length two from D8 to D 9 (through D: ) consists of two

negative links and thus balance theory would suggest a positive link connecting D8 and D 9 (to result

in a balanced cycle between users D8, D: , and D 9 ). From the context of user D8 we would then place

D 9 into the set �8 (2), which we use to denote the set of users that can be reached from user D8 along

a balanced path of length 2. In the general case, users that can be reached from D8 along a balanced

(or unbalanced) path of length ; we place in the set �8 (;) (or *8 (;)). In Figure 5.1 we provide an

illustration of how all the signed paths of a given length would place users along paths from D8 into

their respective sets. Note that the arrows are only used to aid the illustration and that our definition

is based on the more general undirected setting.

Before continuing, let us defineN+
8
to be the set of positive neighbors of a user D8, i.e., D 9 ∈ N+8

if A8 9 = 1. We similarly denote the set of negative neighbors for user D8 as N−8 , where D 9 ∈ N
−
8

when A8 9 = −1. In Figure 5.1 we can see that when having a balanced path of length ; from D8 to

some user D: (i.e., D: ∈ �8 (;)), then all the positively linked neighbors of D: (which we denoted

as the set N+
:
) would be placed in �8 (; + 1). This is because adding a positive link to a balanced

path (i.e., a path consisting of an even number of negative links) still results in a balanced path, but

just of additional length. Similarly when adding a negative link to a balanced path, we obtain an

unbalanced path.

Another key observation from Figure 5.1 is how we can obtain the balanced and unbalanced

sets �8 (; + 1) and*8 (; + 1) of length ; + 1, respectively for user D8, from the sets �8 (;) and*8 (;) of

length ;. Below we provide a recursive definition for calculating the balanced and unbalanced sets

from the perspective of user D8 as follows:

When ; = 1

�8 (1) = {D 9 | D 9 ∈ N+8 }, *8 (1) = {D 9 | D 9 ∈ N−8 }
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For ; > 1

�8 (; + 1) = {D 9 | D: ∈ �8 (;) and D 9 ∈ N+: } ∪ {D 9 | D: ∈ *8 (;) and D 9 ∈ N
−
:
} (5.2)

*8 (; + 1) = {D 9 | D: ∈ *8 (;) and D 9 ∈ N+: } ∪ {D 9 | D: ∈ �8 (;) and D 9 ∈ N
−
:
}

Given the above definition, we again note that the users in the balanced sets (which are reached

along balanced paths) for a user D8 are those that either: 1) have a positive link directly to D8; or

2) those that balance theory would suggest a positive link between them since they have an even

number of negative links along the path connecting them. For the unbalanced sets the definition

is similar, except with direct/suggested negative links. We note that these definitions, based upon

balance theory, now allow us a principled way of aggregating and propagating information in signed

networks using balanced and unbalanced paths/sets. Next we will propose aggregation functions

for our signed GCN and follow with the rest of the details of our framework.

5.1.2.3 Signed Graph Convolutional Network

Before formalizing our signed graph convolutional network, we provide some insights and intuitions

behind the construction in light of balanced and unbalanced sets and paths. The first insight is

that in unsigned GCNs, when constructing a node representation, they aggregate their immediate

local neighbors’ information into a single representation and then through the use of multiple

layers, propagate this in the network allowing a node to incorporate information from a multi-hop

neighborhood (where the number layers in the GCN denotes the number of hops away information

is being aggregated from). However, in signed networks, we cannot categorize all users the same.

This is because semantically users that are connected through positive links to D8 are thought of

as their “friends” while neighbors across negative links are their “foes”. Similarly, for users in

D8’s balanced sets, balance theory would suggest they are their “friends” (even though they are not

directly linked) and those in D8’s unbalanced sets are suggested to be their “foes” based on this

social theory. This phenomenon can be visualized in Figure 5.1. Therefore, we propose rather than

maintaining a single representation for each node, we keep a representation of both their “friends”

109



11
0

Figure 5.2: An illustration of how SGCN aggregates neighbor information in a signed network.

and “foes”, which successfully incorporates both the positive and negative links and gives a more

thorough representation of a given user.

In Figure 5.2 we provide an illustration of how we plan to aggregate and propagate information

in a signed networks. Note that the circles labeled ; = 1, 2, . . . , ! are used to denote how many

hops away the user is from D8 and simultaneously denotes at which layer in our signed GCN that

user’s information will be incorporated into the two learned representations for user D8. We can

observe that we could have a separate aggregator responsible for incorporating the information

from each respective balanced and unbalanced sets. For example, in the first layer of Figure 5.2

we can see that the two positive neighbors of D8 will be incorporated into the level one “friend”

representation through the use of aggregator �(1). Similarly D8’s single negatively linked neighbor

is used for learning the level one “foes” representation. Then, through the use of a second layer in

our GCN, we can incorporate the two-hop neighbors. However, the crucial step here is that we must

aggregate the information of these neighbors correctly to adhere to balance theory according to

our defined balanced and unbalanced paths/sets. Therefore we employ a second set of aggregators,

namely �(2) and * (2) which will help propagate the information from users in sets �8 (2) and

*8 (2), respectively. Notice that just as shown in Figure 5.1 users being included by the �(2)
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aggregator are the users who are along a path of two consecutive positive links, or two consecutive

negative links, because they are both suggested as “friends” according to balance theory. On the

other hand, aggregator * (2) (which is gathering information from users in the set *8 (2)) seeks to

utilize the information from users along paths that consist of one positive and one negative link (in

either ordering, since both fall into set*8 (2)). Now we can more formally discuss the aggregation

functions used by our proposed SGCN.

While aggregating and propagating information in our SGCN, we will maintain two represen-

tations at each layer, one for the corresponding balanced set of users (i.e., suggested “friends”), and

one for the users in the respective unbalanced set (i.e., suggested “foes”). Similar to the unsigned

GCN, we use h(0)
8
∈ R38= to represent the initial 38= node features for user D8. Thus, for the first

aggregation layer (i.e, when ; = 1), we utilize the following:

h�(1)
8

= f

(
W�(1)

[ ∑
9∈N+

8

h(0)
9

|N+
8
| , h
(0)
8

] )
(5.3)

h* (1)
8

= f

(
W* (1)

[ ∑
:∈N−

8

h(0)
:

|N−
8
| , h
(0)
8

] )
(5.4)

where f() is a non-linear activation function, W�(1) ,W* (1) ∈ R3>DC×238= are the linear

transformation matrices responsible for the “friends” and “foes” coming from sets �8 (1) and*8 (1),

respectively, and 3>DC is the length of the two internal hidden representations. More specifically,

for determining the hidden representation h�(1)
8

we also concatenate the hidden representation of

user D8 (i.e., h(0)
8

) along with the mean of the users in set �8 (1). In all subsequent layers, the

aggregation is more complex, just as the definition of �8 (;) an *8 (;) were more complex when

; > 1 in Eq. (5.2). This is similarly due to the cross linking of negative links as seen in Figure 5.1.

The aggregations for ; > 1 are defined as follows:

h�(;)
8

= f

(
W�(;)

[ ∑
9∈N+

8

h�(;−1)
9

|N+
8
|
,

∑
:∈N−

8

h* (;−1)
:

|N−
8
| , h

�(;−1)
8

] )
(5.5)
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h* (;)
8

= f

(
W* (;)

[ ∑
9∈N+

8

h* (;−1)
9

|N+
8
|
,

∑
:∈N−

8

h�(;−1)
:

|N−
8
| , h

* (;−1)
8

] )
(5.6)

where W�(;) ,W�(;) ∈ R3>DC×33>DC for ; > 1. Note that we are utilizing the same logic here

as when defining the sets �8 (;) and *8 (;). When gathering user D8’s “friend” representation (i.e.,

h�(;)
8
) at layer ; (when ; > 1) it is based upon aggregating the “friend” representation at layer

(; − 1) (i.e., h�(;−1)
:

) for all positively linked neighbors D 9 ∈ N+8 while simultaneously collecting

the average amongst the “foes” level (; − 1) (i.e, h* (;−1)
9

) information from all negatively linked

neighbors D: ∈ N−8 . Thus, for the case when ; = 2 we can see the “friend” representation is in fact

gathering information from not only their direct friends (i.e., positively linked neighbors), but also

(at the two hop level) friends of friends’, and foes of foes’. Similarly, in the case of ; = 2 our hidden

representation h* (;)
8

(i.e., user D8’s “foes” representation), the first layer would have gathered direct

negatively linked neighbor information, but in the second layer, we are gathering from D8’s friends’

foes and their foes’ friends.

With the above discussed aggregation methods, we can now present the entire framework of

SGCN. First, in Algorithm 5.2 we discuss how to obtain the embedding for each user D8 in the

signed network. On line 1, we set h(0)
8

equal to x8 for ease in defining the rest of the algorithm.

Then on lines 2 through 5 we show the first layers aggregation process. Next, if the total number of

layers in the SGCN is greater than one (i.e, ! > 1), then we perform the subsequent aggregations

according to the defined higher level aggregation functions we designed based on balance theory.

Finally, on line 14 the last step is concatenating the two hidden representations for user D8, namely

h�(!)
8

and h* (!)
8

together into a single low-dimensional representation.

Next we design an objective function to learn the parameters of SGCN. The objective function

for SGCN is based upon two components, both of which are based on the goal that we would

like the representations to be able to understand the relationships between pairs of users in the

signed network’s embedded space. The first term incorporates an additional layer for performing

a weighted multinomial logistic regression (MLG) classifier. Here we wish to classify whether a

112



11
3

Algorithm 5.2: Signed Graph Convolutional Network (SGCN) embedding generation.
Input: G = (U, E+, E−); an initial seed node representation {x8 ,∀D8 ∈ U}; number of aggregation

layers L; weight matrices W�(;) and W* (;) , ∀; ∈ {1, . . . , !}; non-linear function f
Output: Low-dimensional representations z8 ,∀D8 ∈ U

1 h(0)
8
← x8 ,∀D8 ∈ U

2 for D8 ∈ U do

3 h�(1)
8

← f

(
W�(1)

[ ∑
9∈N+

8

h(0)
9

|N+
8
| , h
(0)
8

] )
4 h* (1)

8
← f

(
W* (1)

[ ∑
:∈N−

8

h(0)
:
|N−
8
| , h
(0)
8

] )
5 if L > 1 then
6 for ; = 2 . . . ! do
7 for D8 ∈ U do

8 h�(;)
8

= f

(
W�(;)

[ ∑
9∈N+

8

h�(;−1)
9

|N+
8
| ,

∑
:∈N−

8

h* (;−1)
:
|N−
8
| , h

�(;−1)
8

] )

9 h* (;)
8

= f

(
W* (;)

[ ∑
9∈N+

8

h* (;−1)
9

|N+
8
| ,

∑
:∈N−

8

h�(;−1)
:
|N−
8
| , h

* (;−1)
8

] )

10 z8 ← [h
�(!)
8

, h* (!)
8

],∀D8 ∈ U

pair of node embeddings are from users with a positive, negative, or no link between them. More

specifically, we construct a mini-batch of users and then a setM, which contains triplets of the form

(D8, D 9 , B) which denotes the pair of users (D8,D 9 ) along with B ∈ {+,−, ?} for denoting whether

there was a positive, negative, or no link between the pair of users. For input into the classifier,

we use the final embeddings for users D8 and D 9 concatenated together (i.e,. [z8, z 9 ]). We use

lB to denote the weight associated with class B. We introduce a second term that is founded on

extended structural balance theory. This term is controlled by _ to balance the contribution towards

the overall objective. The goal of this second term is to have positively linked users closer in the

embedded space than the no link pairs, and the no link paired users should be closer than users
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having a negative link between them. The overall objective is formalized in the following:

L(\, , \"!�) = − 1
M

∑
(D8,D 9 ,B)∈M

lB log
exp ( [z8, z 9 ]\"!�B )∑

@∈{+,−,?}
exp ( [z8, z 9 ]\"!�@ )

+ _
[

1
|M(+,?) |

∑
(D8,D 9 ,D: )
∈M(+,?)

max
(
0, ( | |z8 − z 9 | |22 − ||z8 − z: | |22)

)

+ 1
|M(−,?) |

∑
(D8,D 9 ,D: )
∈M(−,?)

max
(
0, ( | |z8 − z: | |22 − ||z8 − z 9 | |22)

)]

+ '46(\, , \"!�) (5.7)

\, represents the weight matrices used in the layers of our SGCN, \"!� denotes the parameters of

the MLG classifier, lB is used for the weight associated with the class B (with B ∈ {+,−, ?} for the

positive, negative, and no link classes),M(+,?) andM(−,?) are the sets for the pairs of positive and

negatively linked users, respectively, where for every linked pair (D8, D 9 ) we further sample another

user D: randomly (and different in each epoch) that has no link to D8. The term '46(\, , \"!�)

we use for regularization on the parameters of our model. For updating the parameters, we utilize

the same SGD style updating as presented in [75], since it has been show to effectively update the

parameters of a GCN using a mini-batch setting (as compared to previous work such as in [22] that

performed batch gradient descent).

5.1.3 Experiments

In this section, we experimentally evaluate the effectiveness of the proposed signed graph con-

volutional network (SGCN) in learning node representations. We seek to answer the following

questions: (1) Is SGCN capable of learning meaningful low-dimensional representations? and

(2) Does the introduction of balance theory into the aggregation process along with longer path

information provide a performance increase in learning the node embeddings?

To address the first question, we conduct experiments to measure the learned embedding quality

by performing the most fundamental signed network analysis task, namely link sign prediction [4],
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and compare against the signed network embedding state-of-the-art baseline methods. To answer

the second question, we investigate variants of our framework that do not exploit the longer paths

(i.e., only performing a single aggregation step) or that do not make use of balance theory (i.e., the

fundamental signed social network theory).

Experimental Settings: Next, we note the datasets used, the link sign prediction problem,

and the metrics used for evaluation. For our study of learning representations using signed graph

convolutional networks, we conduct our experiments on four real-world signed network datasets,

i.e., Bitcoin-Alpha, Bitcoin-OTC, Slashdot, and Epinions. We note that for each of these datasets

we perform our experiments on the undirected signed networks and have further filtered out users

randomly from the two larger networks (Slashdot and Epinions) that had very few links. We

summarize the new variants of the Slashdot and Epinions datasets in Table 5.2 with some basic

statistics, while Bitcoin-Alpha and Bitcoin-OTC are the same as previously presented in Table 4.2.

The problem of predicting the signs of links [4] is that given a set of existing links in the signed

network that had been held out of the training set, we wish to predict their signs being positive or

negative between those pairs of users. Thus, a binary classifier is used to predict the sign based

on a set of input features from the pair of users (more specifically we employ a logistic regression

model). In our case we concatenate the final embeddings of the two users together as the set of

features. The model is trained using the labeled edges from the training data. For evaluation, since

the positive and negative links are unbalanced (i.e., there are manymore positive links than negative

links), we utilize both F1 and Area Under the receiver operating characteristic Curve (AUC). We

note that higher F1 and AUC both mean better performance. For each dataset, we randomly choose

20% of the data as test, and the remaining 80% as training. Note that we used a grid search along

with cross validation on the training data to tune the hyperparameters of our model.

5.1.3.1 Performance Comparison

Here we present some existing state-of-the-art signed network embeddings methods such that we

can study the effectiveness of our signed GCN (SGCN) in learning node representations in signed
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networks. For succinctness we do not include unsigned methods since previous signed network

embedding work has shown their superiority over the non-dedicated efforts towards signed network

embeddings. The baselines are as follows:

• Signed Spectral Embedding (SSE) [153]: A spectral clustering algorithm based on the

proposed signed version of the Laplacian matrix. We utilize the top-3>DC eigenvectors

corresponding to the smallest eigenvalues as the embedding vectors for each node.

• SiNE [87]: This method is a deep learning framework that utilized extended structural

balance theory.

• SIDE [89]: A random walk based method, utilizing balance theory, is used to obtain indirect

connections for a likelihood formulation.

Furthermore, we propose to evaluate the following two variants of our model:

• SGCN-1: This method only makes use of the first single aggregation layer and therefore only

separates the positive from the negative links (i.e, does not yet make use of balance theory

and our defined balanced paths).

• SGCN-1+: This method similar to SGCN-1 does not make use of balance theory, instead

it performs the naïve aggregation of the first layer, but twice. In other words, the final

representation for each user is based on propagating information along the positive links

twice, and the negative links twice, separately.

Some final notes are the following: 1) in our experiments we do not have node attributes,

therefore instead we use the final embedding of the SSE model as the input feature matrix (i.e.,

-) to all our SGCN variants; 2) for all embedding methods we fixed the final low-dimensional

representation to be 64; 3) We used the authors released code for SiNE3 and use their suggested

hyperparameters [87] for our experiments; 4) For SIDE, we use the authors implementation4 and

3http://www.public.asu.edu/ swang187/codes/SiNE.zip
4https://datalab.snu.ac.kr/side/resources/side.zip
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Table 5.2: Statistics of two signed network dataset variants for SGCN.

Network # Users # Positive
Links

# Negative
Links

Slashdot 33,586 295,201 100,802
Epinions 16,992 276,309 50,918

Table 5.3: Link sign prediction results with AUC.

Embedding
Method Bitcoin-Alpha Bitcoin-OTC Slashdot Epinions

SSE 0.764 0.803 0.769 0.822
SiNE 0.778 0.814 0.792 0.849
SIDE 0.630 0.618 0.547 0.571

SGCN-1 0.780 0.818 0.784 0.663
SGCN-1+ 0.785 0.817 0.804 0.722
SGCN-2 0.796 0.823 0.804 0.864

the suggested hyperparameter settings from [89], but for the unsuggested parameters we used a

grid search around their code’s default settings; and 5) for our models we set _ = 5 and the “friend”

and “foe” hidden representations were each set to 32, such that the final embeddings were of size 64.

Table 5.4: Link sign prediction results with F1.

Embedding
Method Bitcoin-Alpha Bitcoin-OTC Slashdot Epinions

SSE 0.898 0.923 0.820 0.901
SiNE 0.888 0.878 0.854 0.914
SIDE 0.738 0.750 0.646 0.711

SGCN-1 0.910 0.918 0.853 0.851
SGCN-1+ 0.912 0.923 0.865 0.893
SGCN-2 0.917 0.925 0.864 0.933

Comparison Results:

The comparison results in terms of AUC and F1 are demonstrated in Tables 5.3 and 5.4, respectively.

For the tables, we make the following observations:

• SGCN-1 with only one step aggregation from positive and negative links obtains comparable

performance with the best performance from the baselines. This observation suggests that it
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(a) SGCN-2 (F1) (b) SGCN-2 (AUC)

Figure 5.3: Parameter sensitivity when varying the parameter _ on the Bitcoin-Alpha dataset.

is necessary to separate positive and negative links.

• SGCN-1+ outperforms SGCN-1. The results indicate that propagating multiple steps during

the aggregation can help improve the performance.

• Most of the time, SGCN-2 outperforms SGCN-1 and SGCN-1+. Aggregation following the

longer balance and unbalanced paths can boost the performance.

5.1.3.2 Parameter Analysis

The proposed signed GCN has one major hyperparameter, _ (besides the number of layers and the

aggregation types which we have already investigated with our variants of SGCN). The parameter _

is used to control the balance between the two terms in our objective function as given in Eq. (5.7).

More specifically, the first term introduced the multinomial logistic regression term in an attempt

to guide the learned node embedding to be separable such that pairs of user that have positive,

negative, and no link can be positioned such that the classifier can distinguish their relationship.

The second term we utilized for discovering node embeddings that adhere to extended structural

balance theory [154]. With its contribution controlled by _, this term forced pairs of users that have

positive links to be closer in the low-dimensional embedding space than to other users they had no

link with, and further also sought to have users with negative links pulled further apart by wanting

no linked pairs closer together than the negative pairs.
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In Figures 5.3(a) and 5.3(b) we report the results when varying _ for one of the signed network

datasets, namely Bitcoin-Alpha. We do not show results of other settings since we can have similar

observations. As we can see from these two figures _ = 5 seems to be a good balance between the

AUC and F1 performance. The second observation is that when setting _ equal to zero we have

a drastic decrease in performance. Note that we saw similar results across all datasets in that the

contribution of the second term, based on balance theory, was able to provide an improvement.

5.2 Role-based Signed Network Embedding

Most existing network embedding methods have been designed for networks with only a single

edge type [155] and where relations between two nodes implies closeness. Hence, they primarily

try to encode an unsigned network in a way that neighboring nodes are closer in the embedding

space [155]. However, real-world networks might have more than one link type, i.e., a network can

have  types of links where each type represents a different quality of relation between the nodes.

Signed networks are an important class of such networks, having two types of links: positive and

negative [55, 7].

A variety of social media sites, such as Amazon, Wikipedia, and Epinions can be represented

as a signed network where positive signs represent trust, agreement or friendship while negative

ones may show distrust, disagreement or enmity. The underlying principles of signed networks can

be quite different from those of classic networks due to having both positive and negative links.

Therefore, network embedding for signed networks cannot be carried out by simply applying classic

embedding models. While embedding of signed networks is challenging, it has the potential to

greatly advance network analysis tasks such as link/sign prediction [87].

Recently, signed network embedding has attracted increasing attention [156, 157, 158, 118].

Similar to many embedding models for unsigned networks, these models try to embed the network

through finding similarities between nodes assuming connecting paths represent closeness. How-

ever, in signed networks path-based similarities are challenging since signed paths can indicate

either closeness or distantness. Existing works [118, 156, 157] solve this challenge by relying on
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Figure 5.4: Transformation of a signed network with two nodes to an unsigned bipartite network
of role-nodes.

two signed social theories, namely balance theory [29, 30] and status theory [2]. However, the

general architecture on the way they define similarity between two nodes and the use of social

theories is associated with two major challenges. First, social theories are incomplete in explaining

signed network structure, so models built on them are affected and sometimes result in lower quality

embeddings and depend how closely the networks align to these theories. Second, classic embed-

ding models aim to capture presence/absence of links while existing signed embedding models only

use two of the possible interaction states: positive and negative links. Thus, since they ignore link

absence (the third interaction state), they can not reconstruct the presence/absence of links well,

resulting in low performance in link prediction.

To address these shortcomings, we lay out a new perspective for network embedding denoted

as network transformation based embedding: if embedding the original network is challenging, it

can be transformed into another network for which the embedding task has lower complexity. The

transformation can be done by mapping each node in the original network to multiple nodes in the

transformed network. Next, the transformed network can be embedded. Finally, the embedding

vectors obtained from the transformed network can be aggregated to encode the original network.

More specifically, to embed signed networks, we introduce aROle basedSigned networkEmbedding

(ROSE) that bypasses the aforementioned challenges. The underlying idea is to transform the signed

network into a bipartite network where each node takes both “user” and “item” roles for which they

are the giver and receiver of signed links, respectively. Therefore, each node of a signed network
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can be modeled by a set of roles, denoted as role-nodes, where the relations between role-nodes can

be fully captured using unsigned links. Then, ultimately this transformed network can utilize the

state of the art unsigned embedding technique. Figure 5.4 is a toy example of the transformation

process

Each role-node captures a certain aspect of a node in the original network. Hence, a compre-

hensive embedding of a node can be obtained by aggregating the embeddings of their role-nodes.

We introduce two aggregation methods, denoted as fixed aggregation and target-aware aggregation.

The fixed aggregation simply concatenates all the role-node embeddings together. The target-

aware aggregation is based on a recent deep learning based recommendation model that introduced

a model for target dependent encodings of users [159]. Based on this idea, we propose an attention

mechanism based model to aggregate the embeddings of role-nodes in which attendance weights

are obtained with respect to the target entity. To the best of our knowledge, this is the first work to

build target aware embeddings of nodes in a signed network.

5.2.1 Problem Statement

Let a graph be defined as� (+, �) with a link type mapping function i : � → �where+ represents

the nodes, � represents the links, and each link 4 ∈ � belongs to a link type i(4) ∈ � = +,−.

In unsigned networks � has only one values, but signed networks have two values: positive and

negative. Given the graph �, the task of node encoding is to learn a function 5 : + −→ |3 | that

maps each node E to a 3-dimensional embedding vector which can be parametrized by the Matrix

, with size |+ | ∗ 3.

5.2.1.1 Unsigned Network Embedding

Embedding models can be described as an encoding-decoding framework [160] having four com-

ponents: 1) A pairwise node similarity function. 2) An encoder function to create embeddings

from the similarity function. 3) A decoding function to recover the pairwise node similarities

from their embeddings. 4) A loss function that evaluates the reconstructed similarity values. The
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primary difference in the literature is how the embedding methods define node similarity. However,

the shared principle in unsigned similarity functions is that an unsigned path between two nodes

indicates their closeness (e.g., as in [161, 150, 149]).

5.2.1.2 Signed Network Embedding

The unsigned similarity functions cannot be directly applied to signed networks because negative

edges do not represent closeness. Thus, the challenge in embedding signed networks is how to

involve negative edges without hindering positive proximity. Existing methods have sought to

capture node similarity using the paths between them at length one, two, or higher order paths.

Single-length paths: A trivial approach to embed signed networks while involving negative

links is to embed a node based on its immediate neighbors [162, 88]. This, however, has limited

effectiveness because it cannot capture the higher order proximities between nodes. However,

capturing global structures in signed networks is challenging, e.g., given a path containing <

positive links and = negative links, how can the similarity of the nodes can be defined? Does the

path indicate closeness or distantness between the nodes? To aid this previous works used the two

signed social theories, namely balance and status.

Paths of length two: As the above social theories are formed on triangle structures, existing

methods [87, 157] have used them to determine whether the signed path is representing closeness

or distantness between two nodes. However, these methods do not go beyond paths of length two.

As such, they have limited power in capturing global structures.

Longer paths: More recent work has tried to capture longer cycle paths in their embedding

process mainly by relying on the extended version of social theories. [156, 163] both run a random

walk on signed networks similar to node2vec algorithm, [133] applied to node relevance and

personalized ranking [164] using random walks. Then, a graph convolutional network method for

embedding signed networks has been introduced which relies on balance theory [118].

In all, the shared strategy of all these works is that they embed nodes by analyzing the paths

between them. If a path indicates closeness, they embed the nodes closer and distance them
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otherwise. However, to interpret if a path indicates closeness or distantness, they exploit some

strong assumptions which naturally induce noise to the embedding process. Also, this strategy

does not use a principled way to distant nodes based on the absence of links/paths between them,

i.e., it only focuses on capturing positive/negative paths.

5.2.2 Role-based Signed Network Embedding

In this section, we describe the structure of ROSE. Based on the drawbacks of the previous works,

we outline the following requirements: an effective universal network embedding model should be

able to 1) capture the higher order connectivity between nodes, 2) take into account the link labels

as well as the link structures (presence or absence of links), and 3) do not make assumptions about

the origin of the network.

Network transformation based embedding: To address the requirements, we introduce the

general notion of network transformation based embedding. Rather than directly finding the

similarities of the nodes in the input network, it can be transformed to another network in which

we do not encounter the embedding challenges present in the input network. One possible way

to do transformation is to define different roles for a node, denoted as “role-nodes”, and build

a network of role-nodes in a way that the similarities between role-nodes can be determined by

adopting the classic similarity functions. Since each role-node captures a certain aspect of an

original node, the embedding vector of a target node can be derived by aggregating the embeddings

of the corresponding role-node. In sum, a network transformation based embedding model can be

described in three main steps: 1) Network transformation. 2) Embedding the transformed network.

3) Embedding the original network by aggregating the embeddings of the transformed network. By

relying on the general idea of network transformation, we propose ROSE. In the following, ROSE

is described based on the aforementioned three-step architecture. We then illustrate how ROSE

addresses the requirements of the problem.
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Figure 5.5: Transformation process of the input signed network to the network of role-node.

5.2.2.1 Network Transformation

The way the role nodes are defined is fundamental to the effectiveness of ROSE. We aim to

define the transformation such that similarities between role-nodes can be obtained using classical

methods. Note that there can be multiple ways to define the transformation process. Various

embedding techniques have been introduced based on different similarity measures. Similarly,

different embeddingmethods can be developed based on the idea of transformation based embedding

by creating different transformations. Our transformation idea is inspired by recommender systems.

Traditionally, user-item interactions in recommender systems are modeled by a user-item bipartite

network. A signed all-to-all connected network can also be viewed as a bipartite network where

each node plays a “user” role for the links it creates and plays an “item” role for the links it receives.

Based on this analogy, we capture user/item roles of a node separately through a transformation

process.

Step 1: Transformation to a bipartite network. Based on user-item analogy, each node is

mapped to two role-nodes, i.e., the node D is mapped to the role-nodes D>DC and D8= where a link

from D to E in the original network is modeled as an undirected link between D>DC and E8=. As it

can be seen in Figure 5.5(a), the input network is transformed to a signed bipartite network [165]

with two types of nodes “in” and “out”. However, applying a classic similarity measure on the

transformed network is still a challenge due to presence of positive and negative links.

Step 2: Transformation to an unsigned network. We transform the network into an unsigned
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network by defining new role-nodes. A role-node of type “in” E8= is mapped into two role-nodes:

E+
8=

(or E−
8=
) representing its role when positive (or negative) links point toward it. Accordingly, a

link from D>DC to E8= with label ; is modeled as an unlabeled, undirected link between D>DC and

E;
8=
. This enables us to use the well-established similarity functions to determine the similarities of

role-nodes.

Step 3: Augmenting the network. Our strategy is to encode the original network by embedding

the transformed network. However, some of the role-nodes may have a very low degree. In

particular, role-nodes of type “in-” tend to have a very low degree due to the fact that the number

of negative links is often under-represented compared to positive links. According to our results,

this can dramatically hinder the accurate embedding of such role-nodes. To solve this, we leverage

implicit knowledge about the problem domain. If node D>DC has connections towards both E+8= and

F−
8=
, not only it reflects the adjacency between these two role-nodes but also it implies dependence

between their opposite role-nodes: E−
8=

and F+
8=
. To bring this knowledge into our embedding

process, which can attenuate the sparsity problem, we augment our unsigned network with a set of

dummy nodes of type “out”, i.e., for each node of type “out” in the unsigned network with the set of

connections {E1;1
8=
, E2;2

8=
, ..., E=

;<
8=
}, we add a node of type “out-dummy” with the set of connections

{E1
;′1
8=
, E2

;′2
8=
, ..., E=

;′<
8=
} where ;′ is the inverse of ;, i.e., if ; is “-”, ;′ is “+” and vice versa.

Summary of transformation: In sum, � (+, �) is transformed to a bipartite unsigned graph

�D (+D, �D) where |+ | = 4|+D |, |� | = 2|�D |, i.e., a node D ∈ + is mapped to four role-nodes in+A : 1)

D>DC which initiates a link, 2) D3D<<H>DC which initiates a dummy link, 3) D+
8=
which receives a positive

link, and 4) D−
8=

which receives a negative link. And a link 4D,E with the label ; is transformed

to links 4
D>DC ,E

;
8=

and 4
D
3D<<H
>DC ,E;

′
8=

. Figure 5.5 depicts a toy example describing the process. It

should be noted that the transformation is lossless, i.e., � (+, �) can be fully reconstructed from

�D (+D, �D).
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5.2.2.2 Embedding the Original Network

Analogous to unsigned networks, the links between role-nodes indicates their closeness. Hence, a

classic embedding model can be used to embed role-nodes. We employ node2vec [150]. Note that

more advanced embedding models [155, 166] can be used/designed for this purpose. However,

in this paper, our focus is on introducing the structure of ROSE. Once having the embeddings of

role-nodes, a node’s embedding is created by aggregating the embeddings of the corresponding

role-nodes. In the following, we introduce two different aggregation models.

Fixed Aggregation: Each of the roles represents a certain perspective/role of a node in the

original network. In general, if there are multiple representations of an entity, we can concatenate

them or linearly combine them to build a unified representation. Accordingly, a straight forward

way to build a comprehensive and unified embedding of a node is to concatenate the embedding

vectors of the corresponding role-nodes. As such, the fixed representation of node D can be defined

as,D = ,D>DC | |,D+
8=
| |,D−

8=
in which | | represents concatenation. Note that dummy role-nodes are

not used in the aggregation process. In fact, “out-dummy” role nodes are inverses of the role nodes

of type “out” and do not add extra knowledge about the representations of the original nodes.

Target Aware Aggregation: One important application of graph embedding is to use the

embedding vectors to predict the pairwise interactions of nodes, e.g., link prediction. Intuitively,

for such tasks, it is more accurate to encode the given initiator node with respect to the target

entity. In fact, the idea of target-aware profiling is the basis for most of the recommendation

models. For example, in item-based collaborative filtering, to predict the rating of a user towards

an item, her previous ratings are aggregated in a weighted way because not all of her interactions

are equally important in reflecting her taste towards the item [167]. Typically, the weight of a rating

is determined based on the similarity of the corresponding item to the target item [159].

Inspired by recommender systems, we introduce a target-aware embedding technique by propos-

ing a target-aware aggregation model. To the best of our knowledge, the existing techniques build

only fixed embeddings. In our framework, intuitively predicting the pairwise interaction from D to

E depends on the “out” role node of D and “in” role nodes of E. We propose that “out” role-node of
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D can be embedded according to E which is denoted by,DE>DC . Having,DE>DC , the target dependent

embedding of D w.r.t. E is defined as ,E
D = ,

E
D>DC
| |,D. Indeed, we concatenate the fixed embed-

ding of D with a component that depends on the target entity to build its target-aware embedding.

To build ,DE>DC , we design an attention mechanism. We suggest that ,DE>DC can be obtained by

attending to the neighbors of D>DC based on their relevancy to the target entity E. More formally,

,DE>DC
is defined as:

,DE>DC
=

∑
B;
8=
∈# (D>DC )

[4(B;8=, E),B;
8=

],

where 4(B;
8=
, E) is the importance weight of B8= w.r.t. E and # (D>DC) is the set of role-nodes

connected to D>DC . To estimate the importance weights, we introduce an unsupervised attention

model. The intuition behind the model is that the “in” role-nodes of two nodes are more related

if the are more tightly connected in the network. Note that we do not take into account the labels

of connections to find the relevancy of two nodes. To systematically implement the idea, given the

target signed network, we assume the links are unsigned and transform it to a bipartite network

where the obtained network has two types of role-nodes: “in” and “out”. Next, the transformed

network is embedded using node2vec. Finally, 0CC (B;
8=
, E) is defined as follows:

0CC (B;8=, E) = f(,B8= ,,E8=) =
1

1 + 4G?(−,B8= .,E8=)
.

In fact, this weight determines how tightly B and E are connected in terms of the nodes that rated

them regardless of the rating values.

5.2.2.3 Model Justification

We outline three main requirements for an effective signed embedding technique. ROSE fulfills the

requirements. 1) Unlike existing models, ROSE does not rely on any assumption about the origin

of the network. 2) To obtain the embedding of role-nodes, we use a random walk based model

to ensure the obtained embeddings capture the higher order proximities. 3) The model preserves

both link labels and link structures. To address the sign/link prediction tasks the embeddings from

ROSE can be fed to a nonlinear function trained by a method like MLP to determine the target
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interaction state. In fact, the embeddings of role-nodes contain major patterns that can aid to fully

reconstruct the graph. We encode the role-nodes in a way that if a link with label ; exists from

D to E, ,D>DC has higher proximity to ,
E;
8=

than ,
E;
′
8=

. And if there is no link from from D to

E, ,D>DC is expected to have low proximities to both ,
E;
8=

and ,
E;
′
8=

. As such, having a function

to find the similarities of embeddings, the label of the link from D to E is expected to be ; if the

proximity of,D>DC to,E;
8=

is greater than it’s proximity to,
E;
′
8=

. And if,D>DC has low similarity

to both,E+
8=

and,E−
8=

it indicates absence of link. Moreover, we observe other interesting patterns

in our experiments, which will be discussed in the experiments section. In addition to addressing

the requirements of the problem, the proposed framework creates an avenue to make a connection

between the recommender systems and signed networks contexts. Lastly, the proposed model is

quite generalizable. Since the model does not rely on any assumption specific for signed networks,

it can be generalized for networks with multi-type of links.

5.2.3 Experiments

We conducted experiments to verify the effectiveness of the proposed framework and the ideas

behind the model. The experiments are focused on answering two key questions:

• How do the proposed embedding frameworks perform when compared to the state of the art

models in terms of link-label prediction and link prediction tasks?

• What is the interpretation of the embeddings obtained from the network of role-nodes?

Datasets: Three real-world datasets were used in the experiments: Epinions [3], WikiElection

[168], and Slashdot [169] which have been used in previousworks [55]. WikiElection: InWikipedia

election, users may give positive or negative votes for the promotion of other users as administrator.

WikiElection dataset is the signed network obtained fromusers’ votes for elections of administrators.

Epinions: Epinions was an online product review site. Users can express positive or negative votes

to other users regarding the trustworthiness of their reviews; this dataset is from the positive/negative

votes between users. Slashdot: Slashdot dataset is also obtained from an online service (technology
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Table 5.5: Statistics of three signed network dataset variants for ROSE.

Nodes Edges Positive Edges Negative Edges
WikiElection 7118 103747 78.7% 21.2%
Epinions 119217 841200 85.0% 15.0%
Slashdot 82144 549202 77.4% 22.6%

news website) where users can share comments and flag each other as friend or foe. The flags

indicate approval or disapproval of comments. Analogous to Epinions, Slashdot dataset models

the interactions of users using a signed network. Statistics of the datasets are given in Table 5.5.

5.2.3.1 Performance Comparison

In this experiment, we compared the performance of ROSE with four recently introduced signed

network embedding models on two tasks: sign prediction and link prediction. Moreover, we

compared the target dependent variant of ROSE denoted as ROSE-UAT with the fixed variant

represented by ROSE on both of the tasks. AUC (Area Under the Curve) was used as the evaluation

metric.

The following is the list of the models used in this experiment. SIDE is a random walk based

approach that aims to capture global structures in the embedding process [156]. BESIDE aims to

use both balance and status theories in a complementary manner to encode signed networks[157].

SiNE is a deep learning based framework that performs based on undirected networks. The main

principle behind the model is that “users should sit closer to their friends than their foes” [87].

SIGNet is also a random-walk basedmodel that maintains structural balance using targeted negative

sampling. [88].

Evaluation: In our datasets, the number of negative edges is much smaller than the positive

links. Thus, comparing methods based on their original test set accuracy could be misleading,

especially for sign prediction. Thus, analogous to previous works [4, 157], we balanced the

datasets by randomly removing positive links and used 5-fold cross-validation for our experiments.

The baselines were evaluated based on the source-codes released by their authors. The embedding

dimension for all of the models was set to 30.
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Table 5.6: AUC of the proposed model (ROSE) and the baseline methods on the WikiElection,
Slashdot and Epinions datasets.

Sign Prediction Link Prediction
Model WikiElection Slashdot Epinions WikiElection Slashdot Epinions
SIDE 0.7986 0.8815 0.8672 0.9184 0.9342 0.9314

BESIDE 0.8953 0.9012 0.9342 0.9092 0.9265 0.9397
SiNE 0.8632 0.8680 0.8543 0.5833 0.5983 0.6488

SIGNET 0.8943 0.8997 0.9181 0.9099 0.8862 0.9205
ROSE 0.9091 0.9082 0.9533 0.9418 0.9357 0.9403

ROSE-UAT 0.9116 0.9095 0.9547 0.9426 0.9391 0.9444

Sign Prediction: The problem of sign prediction [3, 124] is the major task that has been used

to evaluate encoding models in previous works. The Table 5.6 shows the AUC of the models on

three datasets. First, we notice ROSE-UAT and ROSE outperform all the baselines. For example,

ROSE-UAT outperforms BESIDE by 1.6%, 0.8%, and 2% in terms of AUC on WikiElection,

Slashdot, and Epinions datasets, respectively. The higher accuracy of ROSE can be attributed to its

effectiveness in addressing the requirements of the problem. Additionally, we observe ROSE-UAT

perform better than ROSE. In fact, encoding the nodes with respect to a target entity helps to better

analyze the interactions of the node and the entity.

Link Prediction: Although link prediction is an important task in network mining [54],

previous works have not evaluated their models based on link prediction task. To evaluate the

models for the link prediction task, we first fed the training graph to the models and obtained the

node encodings. Next, we created training and test sets. Each data instance in the training/test sets

is the concatenation of the encoding vectors of a node pair (,D,,E) and the label of the instance is

1 if there is a link from D to E and 0 otherwise. In both training and test sets, 50% of instances have

label 1 and 50% of them have label 0. The node pairs with 0 label were randomly selected. The

training set obtained from each embeddingmethodwas fed to amulti-layer perceptron classifier, and

the AUC of the trained model was obtained based on the test set. Table 5.6 shows the results of the

experiments. As it can be seen, ROSE has superior performance than the baseline models on all but

one of the datasets since the model systematically differentiates the three different interaction-states

between nodes in its embedding process.
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Figure 5.6: The average pairwise distance of the encoding vectors of the role-nodes of a node pair
(D, E) for different interaction-types between them: positive link, negative link, and absence of a
link.

5.2.3.2 Interpretation of the Encodings of Role-nodes:

Given nodes D as initiator and E as receiver, three interaction-states can be considered between

them: absence of link, positive link and negative link. We introduced the major pattern extracted

from the distance/similarity of the encoding vectors of D and E that can aid to determine the

interaction type between them. We investigated the existence of such patterns. Figure 5.6, shows

the average distance of different encoding components of a node pair (D, E) as a function of the

interaction-state between them. For example, in Slashdot dataset if the link is positive the average

distance of ,D>DC from ,E+
8=

denoted as 30E6 (D>DC , E+8=) is 1.2. The average distances of the

components are consistent with the introduced major patterns. If the link from D to E is positive,

3 (D>DC , E+8=) is expected to be smaller than 3 (D>DC , E−8=). For example, for a positive link in Epinions,

30E6 (D>DC , E+8=) is 1.1 while 30E6 (D>DC , E−8=) is 1.7. Moreover, we observe that if there is a link
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from D to E, 30E6 (D>DC , E−8=) + 30E6 (D>DC , E
+
8=
) is smaller than the case when there is no link. For

example, in Slashdot, 30E6 (D>DC , E−8=) + 30E6 (D>DC , E
+
8=
) is 3.3 if there is no link from D to E and it

is 2.75 if there is a link. In addition to the major pattern, we observe four other patterns. We name

these patterns as implicit patterns because our model has not targeted to extract them.

First, if the sign of the link from D to E is positive, similar nodes rate them similarly and if it

is negative, similar nodes rate them with different signs. In fact, the smaller distance between the

embeddings of the role-nodes of type “in+” and of type “in-” of two nodes means that they were

rated by similar nodes similarly. For example, in Epinions dataset 30E6 (D+8=, E
+
8=
) and 30E6 (D−8=, E

−
8=
)

are 1.1 and 1.3 respectively when the sign of the edge from D to E is positive while those distances

are 1.7 and 1.6 respectively when the edge sign is negative. It can be said this pattern is aligned

with balance theory, i.e., the triangle structures described in balance theory can be regarded as a

special case of this pattern [170]. Second, D and E rate similar nodes more similarly when there

is a positive link between them than when there is a negative a link connecting them. The smaller

distance values between the embeddings of the role-nodes of type “out” of two nodes indicate

that they have rated similar nodes similarly. As it can be seen, 30E6 (D>DC , E>DC) is smaller when

there is a positive link from D to E. Again, balance theory can be regarded as the special case of

this pattern. Third, the signs of the link between two nodes in different directions are correlated.

30E6 (E>DC , D+8=) - 30E6 (E>DC , D
−
8=
) is smaller when there is a positive link from D to E than when

there is a negative link. This pattern is contradictory to status theory. Fourth, the average distance

between the embeddings of the role-nodes of two nodes is quite larger when there is no link between

them than when there is a link. A large distance between the embeddings of two nodes implies they

are not tightly connected and belong to different clusters.
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CHAPTER 6

SIGNED NETWORK APPLICATIONS

In this chapter 1
,
2
,
3 , we investigate applying signed networks to understanding and solving real-

world application problems. In traditional unsigned network analysis there are many data mining

applications that are improved through harnessing these networks, such as information propaga-

tion [171] and recommendation [172]. Similarly, signed networks have also been used towards

improving these traditional applications in information propagation [111, 173, 174] and recom-

mendation [175, 132, 130]. In addition, although recently there have been algorithms for both

the tasks of predicting interaction polarity scores [176, 177, 178, 179] and link signs between

users [61, 131, 4, 180]. However, there are still some challenges associated with signed networks

for predicting interaction/link polarities, such as the cold-start problem [181, 179], which is defined

when users first join the system and have not logged many interactions/links yet. Furthermore, most

of these methods them have tackled these two tasks independently. This naturally does not utilize

the linkage between the two if the content (i.e., “items”) were generated by the users themselves.

Thus, in Section 6.1 we present a joint model that is able to both predict the interaction polarity

scores between users and content, but simultaneously predict the polarity directly between users.

In addition to the traditional applications, there are also a plethora tasks in other domains that

can benefit from signed networks. More specifically, signed networks in chemistry (i.e., Möbius

graphs) are used with studying molecular systems [182]; in ecology for analyzing community

structure [183]; in physics for modeling frustration in spin glasses [184]; and in political science

1Tyler Derr, Zhiwei Wang, Jamell Dacon, and Jiliang Tang. “Link and Interaction Polarity
Predictions in Signed Networks.” Social Network Analysis and Mining. 2020.

2Tyler Derr, Zhiwei Wang, and Jiliang Tang. “Opinions Power Opinions: Joint Link and
Interaction Polarity Predictions in Signed Networks.” In Proceedings of the 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining (ASONAM).
2018.

3Tyler Derr*, Hamid Karimi*, Aaron Brookhouse, and Jiliang Tang. “Multi-Factor Congres-
sional Vote Prediction.” In Proceedings of the 2019 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM). 2019.
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for analyzing balance and polarization [185]. In addition, other domain areas such as health (e.g.,

weight loss prediction using social networks [186]), education (e.g., utilizing social networks to

better understand teachers [187, 188]) Thus, in Section 6.2 we present a comprehensive congres-

sional vote prediction framework built around modeling both ideological and social factors, with

the latter being modeled as a signed bipartite network.

6.1 Link and Interaction Polarity Prediction

Online social media has become an increasingly popular place for people to share and exchange

their opinions. These opinions among users can be expressed in two main ways, namely either

directly or indirectly. More specifically, in signed networks, users can directly specify opinions

to others via establishing positive or negative links; and they also can give opinions to content

generated by others via a variety of social interactions such as commenting and rating. Intuitively

these two types of opinions should be related. For example, users are likely to give positive (or

negative) opinions to content from those they have established positive (or negative) links; and users

tend to create positive (or negative) links with those that they frequently positively (or negatively)

interact with. Therefore we can leverage one type of opinions to power the other by capturing

the correlation between these two types of opinions. Hence, a joint framework has the potential

to mitigate the data sparsity and cold-start problems for both tasks. Meanwhile, they can enrich

each other that can help mitigate the data sparsity and cold-start problems in the corresponding

predictive tasks – link and interaction polarity predictions, respectively.

6.1.1 Problem Statement

LetU = {D1, D2, . . . , D=} denote the set of = users. We represent signed links between users in an

adjacency matrix, T ∈ R=×=, where T8 9 = 1 if D8 creates a positive link to D 9 , −1 if D8 creates a

negative link to D 9 , and 0 otherwise (i.e., when D8 has shown no link to D 9 ). LetR = {A1, A2, . . . , A<}

be the set of < content items generated byU. We use A ∈ R=×< to denote the authorship matrix

where A8 9 = 1 if D8 creates A 9 and A8 9 = 0 otherwise. Social media provides multiple ways for

134



13
5

Table 6.1: Extended epinions dataset statistics.

# of Users 233,429
# of Positive Links 717,667
# of Negative Links 123,705
Density of T 7.75 × 10−5

# of Reviews 755,722
# of Positive Interactions 12,581,553
# of Negative Interactions 1,086,551
Density of H 1.54 × 10−5

users to express their opinions to content items generate by other users. For example, Facebook and

Twitter allow their users to comment on content; Youtube provides thumbs-up and -down buttons;

and Epinions enables its users to rate the helpfulness of the content with scores from 1 to 6. We use

H ∈ R=×< to denote opinions expressed by U to R, where H8: = 1(>A − 1) if D8 gives a positive

(or negative) opinion to A: and we use H8: = 0 to indicate no explicit opinion is expressed from

D8 to A: . Note that in this paper, we define positive (or negative) interactions between D8 and D 9

as D8 giving positive (or negative) opinions to content items generated by D 9 . In other words, an

interaction between users is defined as a triplet (D8, A: , D 9 ) where D8 expresses opinions to A: that

was generated by D 9 .

With the above notations and definitions, our problem is stated as follows: given the signed

relations T, the authorship matrixA and the user-item opinion matrixH, we aim to learn a predictor

that can infer signed links and interaction polarities simultaneously by leveraging T, A, and H.

Note that when the content of the item is available, we also can utilize the content of R.

However, in this paper, we focus on leveraging T, A, and H and would like to leave the problem of

exploiting content as one future work.

6.1.2 Signed Network User Opinion Data Analysis

In this section, we conduct preliminary analysis on the correlation between signed links and

interaction polarities. We begin by introducing an extended version of our Epinions dataset as

previously described in Table 4.2.
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6.1.2.1 Extended Epinions Dataset

We collected an extended dataset from Epinions for this investigation. Epinions users can give

positive and negative links to each other, which we use to construct the T matrix. They also can

write reviews and we use this data to construct the authorship matrix A. For each review others

can use scores from 1 to 6 to indicate the helpfulness of the given reviews and that we use these

to construct the matrix H. We define positive and negative helpfulness ratings to be {4, 5, 6} and

{1, 2, 3}, respectively. Some statistics of the dataset are shown in Table 6.1. From the table, we

can observe that (1) there are more positive links (or interactions) than negative ones; and (2) both

links and interactions are very sparse. The task of creating (or receiving) a signed link to others

can be thought of as an explicit form of expressing one’s opinion of (or from) others. In contrast,

when a user interacts with the content authored by others, they are implicitly marking their opinion

towards others in these interactions. Therefore, it is reasonable to assume that the implicit and

explicit opinions among users are correlated, so we investigate these correlations from both global

and local perspectives.

6.1.2.2 Correlated User Opinions: A Global Perspective

From a global perspective, we want to examine the correlations between these explicit and implicit

opinions from one user. In particular, we aim to answer the following questions – (1) is a user,

giving more positive (or negative ) links, likely to give more positively (or negatively) on content

from others? and (2) is a user, receiving more positive (or negative ) links, likely to receive more

positive (or negative) opinions on his/her content? In this work, we refer to giving links or opinions

on content as giving behaviors; while receiving links or opinions on content as receiving behaviors.

To answer the first question, we group users into three classes based upon their outgoing links

as follows: (1) users who only have positive outgoing links (76,819 users); (2) users having only

negative outgoing links (7,138 users); and (3) users who have both positive and negative outgoing

links (11,361 users). Then, we calculate the opinions (or helpfulness ratings) they gave to content

from others for each group and we plot kernel smoothing density estimation for each group in
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(a) Giving behaviors. (b) Receiving behaviors.

Figure 6.1: Giving and receiving behaviors from the global perspective on opinion correlations.

Figure 6.1(a). We note that on average users who only create positive links also tend to interact

more positively with the content generated by other users as compared to users who only create

negative links. Furthermore, users who create both positive and negative links show a higher

variance than the only positive and only negative classes, and thus are more likely to express both

positive and negative behaviors in their interactions.

To answer the second question, we divide users into three groups based upon their incoming

links as follows: (1) users who only have positive incoming links (52,810 users); (2) users having

only negative incoming links (14,701 users); and (3) users who have both positive and negative

incoming links (17,090 users). Following the similar procedure, we plot kernel smoothing density

estimation of receiving behaviors for each group in Figure 6.1(b). From the figures, 6.1(a) and

6.1(b), we can make very similar observations for receiving behaviors as giving behaviors, which

lead to a positive answer to the second question – users, receiving more positive (or negative) links,

are likely to obtain more positive (or negative) opinions on their content.

6.1.2.3 Correlated User Opinions: A Local Perspective

The global perspective in Subsection 6.1.2.2 focuses on correlations between one user and the

remaining network. In this subsection, we focus on a pair of users and we want to investigate
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(a) Giving behaviors. (b) Receiving behaviors.

Figure 6.2: Giving and receiving behaviors from the local perspective on opinion correlations.

whether the existence of a positive (or negative) link for a pair of users makes a difference on how

they give (or receive) opinions on each other’s content. In particular, for a pair of users D8 to D 9 ,

we aim to answer – (1) if D8 gives a positive (or negative) link to D 9 , is D8 likely to give positive (or

negative) opinions to content from D 9? ; and (2) if D 9 receives a positive (or negative) link from D8,

is D 9 likely to give positive (or negative) opinions to the content from D8? Note that in this work,

we use D8 + D 9 , D8 − D 9 and D8?D 9 to denote a positive, negative and no link from D8 to D 9 .

To answer the first question, we divide all pairs of users into three groups – (a) positive pairs

D8 + D 9 ; (b) negative pairs D8 − D 9 ; and no-link pairs D8?D 9 . For each pair in each group, we

calculate the average opinion (or helpfulness ratings) from D8 to the content of D 9 . We apply kernel

smoothing density estimation for each group and the distributions are shown in Figure 6.2(a). From

this figure, we note that on average positive pairs have higher helpfulness scores than no-link pairs,

which have higher scores than negative pairs. Hence, it is quite evident from the figure that if D8

gives a positive (or negative) link to D 9 , D8 is likely to give positive (or negative) opinions to the

content from D 9 .

Intuitively, if D 9 receives a positive link from D8, D 9 is likely to be friendly to D8, and as a

consequence, D 9 is likely to give positive opinions to the content of D8. On the other hand, if D 9

receives a negative link from D8, D 9 could do revenge back and give negative opinions to the content
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of D8. We follow a similar procedure of answering the first question for the second question. The

results are demonstrated in Figure 6.2(b). From this figure, we observe that (1) on average, D 9

mostly gives positive opinions to the content from those who give positive links to D 9 ; while D 9

mostly gives negative opinions to the content from those who give negative links to D 9 . These

observations support that if D 9 receives a positive (or negative) link from D8, then D 9 is likely to

give opinions being more positive (or negative) to the content from D8.

6.1.3 The Joint Link and Interaction Polarity Prediction (LIP) Framework

In Section 6.1.2, we validated that there exist correlations between a user’s opinion of other users

in regards to the links they form in signed social networks and the polarities of the interactions

between them. Thus, these findings naturally lead us to the question of whether this knowledge

can benefit the two prediction tasks that are found in the two domains; link and interaction polarity

prediction. In this section, we first briefly discuss a basic framework to solve the two tasks of

link and interaction polarity predictions individually. We then discuss how to model the opinion

correlations that enable us to have the opinions in one task power the other. Finally we present our

proposed framework LIP, which directly incorporates these correlations into a joint optimization

algorithm that can infer the polarities of links and interactions jointly.

6.1.3.1 Basic Link and Interaction Polarity Prediction Models

The low-rank matrix factorization approach has gained popularity recently and is now being used

across various applications such as link prediction [189, 131] and recommender systems [132,

179]. In this work, we choose to build the basic prediction models based on the low-rank matrix

factorization approach.

Link Prediction: Let T = {(D8, D 9 ) | T8 9 ≠ 0} be the set of pairs with links. In terms of the

link prediction task, we would like to find two latent matrices U = [u1, u2, . . . , u=] ∈ R !×= and

V = [v1, v2, . . . , v=] ∈ R !×= ,with  ! being the number of latent dimensions, by solving the
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following optimization problem:

min
U,V

1
2

∑
(D8,D 9 )∈T

(T8 9 − u>8 v 9 )2 +
V1
2

(
‖U‖2� + ‖V‖

2
�

)
(6.1)

where u8 and v8 are the user latent vectors representing giving and receiving link behaviors of D8,

respectively. Thus, u>
8

v 9 models the sign of a link from D8 to D 9 , and therefore after optimizing the

above formulation, we can use such inner products as a prediction for unknown user-user signed

links in the network. Note that ‖U‖2
�
denotes the Frobenius norm ofU and is used as a regularization

term to prevent overfitting, similarly for V, and both are controlled by the hyperparameter V1.

Interaction Polarity Prediction: Let H = {(D8, A: , D 9 ) | H8: ≠ 0,A 9 : ≠ 0} be the set of

interaction triplets and H8: denotes the opinion from D8 to the content A: authored by D 9 . The

main difference between the basic model for this task from traditional matrix factorization based

recommender systems is that we now have a third piece of information, the author. Thus, rather

than taking the typical user-item formulation, we instead want to formulate the model so that we

can include information about the author of the content.

In this problem, we wish to find three latent matrices P = [p1, p2, . . . , p=] ∈ R �×=, Q =

[q1, q2, . . . , q=] ∈ R �×=, and S = [s1, s2, . . . , s<] ∈ R �×< , where p8 and q8 respectively denote

the giving and receiving interaction behaviors of D8, and s: is the latent vector for content A: .

One way to represent this would be to ignore the author and want p>
8

s: to model the interaction

between user D8 on content A: that was authored by D 9 . Similarly, we could ignore the content and

only use the author, i.e., p>
8

q 9 ), but each of these are lacking information. Hence, we propose to

use p>
8
(q 9 + s: , which includes both the context of the author and the content itself. These three

matrices can be obtained via solving the following optimization problem:

min
P,Q,S

1
2

∑
(D8,A: ,D 9 )∈H

(H8: − p>8 (q 9 + s: ))2 +
V2
2

(
‖P‖2� + ‖Q‖

2
� + ‖S‖

2
�

)
(6.2)

the term
(
‖P‖2

�
+ ‖Q‖2

�
+ ‖S‖2

�

)
is introduced to avoid over-fitting, which is controlled by

V2. Note that another way of modeling could be to linearly combine the author and content

representation. In that way we could define M ∈ R �×2 � with p8 (M(q 9 | |s: )), where | | is used
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to denote concatenation. However, this would add extra complexity by needing to learn M, so we

use p>
8
(q 9 + s: ), and leave other formulations as future work. Next we will discuss how to capture

correlations based on the two aforementioned basic models.

6.1.3.2 Modeling User Opinion Correlations

In Section 6.1.2, we found that the giving (or receiving) behaviors in terms of links and interactions

are correlated. In the basic models from Subsection 6.1.3.1, we use u8 and v8 to denote users’

behaviors when giving and receiving links, respectively. While we use p8 and q8 to respectively

indicate users’ behaviors when giving and receiving interactions, separately. Therefore, we can

capture the opinion correlations by bridging the two giving behaviors via u8 and p8, and the two

receiving behaviors via v8 and q8.

Since the two giving behaviors are correlated, we can find a linear mapping matrix W$ ∈

R �× ! that can map D8’s latent vector u8, which denotes his/her underlying behavior on how to

create links, to the latent vector p8, which captures their behavior towards how they give opinions

to the content authored by other users in the network. Given a set of latent vectors for all users

D8 ∈ U, it can then be easily seen that the linear mapping between them would be a solution to the

following optimization problem:

min
WO

∑
D8∈U

‖W$u8 − p8 ‖22 (6.3)

Similarly, we seek to find a matrix W� ∈ R �× ! to represent the mapping between the user D 9 ’s

latent vectors v 9 , and q 9 , which denote their receiving behaviors of receiving links and interactions,

respectively. The mapping W� can be learned as follows:

min
WI

∑
D 9 ∈U



W�v 9 − p 9


2

2 (6.4)

Eqs. (6.3) and (6.4) can capture opinion correlations for links and interactions. They also allow us

to bridge the two basic models for link and interaction polarity predictions together. Next we will

introduce the proposed joint framework.

141



14
2

6.1.3.3 The Proposed Joint Framework

Now we have formulated a model on how to optimize a linear mapping between both the giving

and receiving behaviors in the two tasks. Next we show how these mappings can be used as two

additional terms in our joint matrix factorization framework, LIP, for the purpose of joint link and

interaction polarity prediction. LIP solves the following optimization problem:

min
U,V,P,Q,
S,W� ,W$

L(U,V,P,Q, S,W� ,W$)

=
1
2

∑
(D8,D 9 )∈T

(T8 9 − u>8 v 9 )2

+ [
2

∑
(D8,A: ,D 9 )∈H

(H8: − p>8 (q 9 + s: ))2

+ W
2

( ∑
D8∈U

‖W$u8 − p8 ‖22 +
∑
D 9 ∈U



W�v 9 − q 9


2

2

)
+ V1

2

(
‖U‖2� + ‖V‖

2
�

)
+ V2

2

(
‖P‖2� + ‖Q‖

2
� + ‖S‖

2
�

)
+ V3

2

(
‖W� ‖2� + ‖W$ ‖2�

)
(6.5)

where the first term is a standard user-user matrix factorization model (as discussed in Subsection

6.1.3.1) for the link prediction problem. The second term is a modification to the user-review

matrix factorization model that also incorporates the additional vector q 9 ∀D 9 ∈ U to represent

the influence of the author D 9 in the prediction of D8’s opinion on A: , when A: was written by D 9 .

The third and fourth terms capture the correlations of giving and receiving behaviors, respectively,

and their contributions are controlled by a hyperparameter W. Other terms in Eq. (6.5) are added to

avoid overfitting.

We note that the balance between optimizing for the two tasks (sign link prediction and user

interactions polarities) is balanced by the hyperparameter [, where a small increase in this value will

result in an increase to the importance of the user interaction polarity prediction task, and similarly

towards the link prediction taskwhen decreasing its value. Also, this transfer of information between

problems is done by the linear mapping used in LIP (more specifically the terms controlled by W

142



14
3

in Eq. (6.5) ). If a user D8 has no link information, they are deemed a cold-start user in the link

prediction task. Thus there is no way to learn u8 and v8 in the basic model and we fail to do link

prediction for D8. However, if D8 has had some interactions with other users in the network, we can

learn p8 and q8 from his/her interaction data. Thus, the proposed framework LIP can also learn u8

and v8 via the model components of capturing giving and receiving correlations via the third and

fourth terms in Eq. (6.5). Similarly, LIP can also help when D8 has no interaction data but has link

information. Via the above analysis, we note that LIP has the potential to mitigate the data sparsity

and cold-start problems in either link prediction or interaction polarity prediction.

6.1.3.4 An Optimization Method for LIP

Given the the optimization objective shown above, we now present how to solve this problem.

We have chosen to use stochastic gradient descent (SGD) due to the non-convexity of the joint

optimization formulation. First, we compute the partial derivatives with respect to each of the

parameters (i.e., u8, v 9 , p8, q 9 , s: ,W$ , and W� ) and then iteratively update them using SGD until

convergence. We use the combined training data X = {T ∪ H}, where T and H are the link and

interaction training data, respectively.

For simplicity in the below, let 4T8 9 = (T8 9 − u>
8

v 9 ) be the error of estimating the link (which

in some social networks, such as Epinions, can represent trust-distrust) from user D8 to user D 9 ,

4H8: 9 = (H8: −p>
8
(q 9 + s: )) be the error of estimating the interaction value user D8 gave to content

A: that had been authored by user D 9 , 4$ = (W$u8 − p8) be the error for our linear mapping from

user D8’s latent vector u8 (representing the way they give links) to their latent vector p8 (representing

how they interact with content created by others), and finally, we denote 4� = (W�v 9 − q 9 ) be the

error for our linear mapping from user D 9 ’s latent vector v 9 (representing the way they receive links)

to their latent vector q 9 (representing how the content they had authored receives interactions).

Gradients of L with respect to U and V: The gradients of Eq. (6.5) w.r.t. u8 and v 9 are as

follows, respectively:
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mL(U)
mu8

=
∑

{ 9 | (D8,D 9 )∈T }

(
− 4T8 9 v 9

)
+ WW>

$
4$ + V1u8

mL(V)
mv 9

=
∑

{8 | (D8,D 9 )∈T }

(
− 4T8 9u8

)
+ WW>� 4� + V1v 9

Gradients of L with respect to P, Q, and S: The gradients of Eq. (6.5) w.r.t. p8, q 9 and s:

are the following, respectively:

mL(P)
mp8

=
∑

{(:, 9) | (D8,A: ,D 9 )∈H}

(
− [4H8: 9 (q 9 + s: )

)
− W4$ + V2p8

mL(Q)
mq 9

=
∑

{8 | (D8,A: ,D 9 )∈H}

(
− [4H8: 9p8

)
− W4� + V2q 9

mL(S)
ms:

=
∑

{8 | (D8,A: ,D 9 )∈H}

(
− [4H8: 9p8

)
+ V2s:

Gradients of L with respect to W$ and W� : Finally, we present the gradients of Eq. (6.5)

w.r.t. W$ and W� , which are shown below, in respective order.

mL(WO)
mW$

=
∑
D8∈U

(
W4$u>8

)
+ V3W$

mL(W� )
mW�

=
∑
D 9 ∈U

(
W4�v>9

)
+ V3W�

With update rules to optimize Eq. (6.5), we use SGD to optimize the framework using the combined

training data X = {T ∪H}, where T andH are the link and interaction training data, respectively.
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Algorithm 6.1: The optimization method for the proposed LIP framework.
Input: T = {(D8, D 9 ) |T8 9 ≠ 0} be the set of pairs with links and

H = {(D8, A: , D 9 ) |H8: ≠ 0,A 9 : ≠ 0} be the set of interaction triplets
Output: U and V for link predictions; and P,Q, and S for interaction polarity predictions

1 Randomly initialize U,V,P,Q, S,W$ ,W�

2 Construct the learning data set X = {T ∪ H}
3 while Not convergent do
4 Shuffle(X)
5 foreach G ∈ X do
6 if G ∈ T then
7 Calculate gradients of L(U,V,P,Q, S,W� ,W$) w.r.t. u8, v 9 ,W� , and W$

8 if G ∈ H then
9 Calculate gradients of L(U,V,P,Q, S,W� ,W$) w.r.t. p8, q 9 , s: ,W� , and W$

10 Update the respective parameters using gradient descent methods

Note that although there are additional methods for optimizing matrix factorization based methods,

SGD has been shown to be both efficient and easy to tune, e.g., adaptive learning rates.

With gradients calculated above to optimize Eq. (6.5), the detailed optimization algorithm is

presented in Algorithm 6.1. Next we briefly introduce Algorithm 6.1. In line 1, we randomly

initialize model parameters. In line 2, the learning data includes links and interactions. From line

3 to line 14, we use stochastic gradient decent to optimize the framework. In particular, for each

iteration, we first shuffle the data in line 4; and then update model parameters using gradient decent

methods from line 5 to line 12. When having a signed user-user link training example, the algorithm

utilizes lines 6 through 8 to calculate the gradients, as compared to when having an interaction

training example, lines 9 through 11 are used. Then, on line 12, the model parameters for the

respective part of the problem (based on whether we are updating on a signed link or interaction)

can be updated using a gradient based method.

6.1.4 Experiments

In this section, we conduct experiments to answer the following two questions: (1) Can our joint

model help alleviate the sparsity problem in these two prediction tasks? (2) Do the terms based
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upon correlated user opinions/behaviors in LIP provide a transfer of information between the two

problems? To address the first question, we perform experiments in which we increase the sparsity

of the training data and compare the performance with representative baselines. We address the

second question by examining if our algorithm is robust to handle some cold-start users. In the

next subsection we will further introduce our dataset and how it was used, the metric used in

evaluating the two prediction tasks, then we introduce the experimental settings for the two types

of experiments we have performed.

Experimental Settings: As mentioned in Section 6.1.2, we have collected a dataset from

Epinions for these experiments. Note that for the purpose of this study, we have filtered our

collected Epinions dataset to form more dense user-user and user-content matrices. The first step is

to pre-process the data such that we have the appropriate training, validation, and testing sets from

our dataset.

The filtering we perform only keeps users that have both given and received a link, and also

requires the users to have given at least one helpfulness rating and have also authored at least one

review that has received at least one helpfulness rating. For all selected users to be filtered out,

we remove all their user links, reviews they had written, and helpfulness ratings associated with

that user. The reason for this filtering is that it will allow us to later remove portions of the data to

artificially create training sets that have a varying percentage of cold start users and also different

levels of sparsity and therefore seemingly becoming more similar to the raw dataset.

The initial extended Epinions dataset had contained 233,429 users, 841,373 user-user links,

and 13,668,105 helpfulness ratings. After the above mentioned filtering process, we were left with

29,901 users, 600,976 user-user links, and 11,555,599 helpfulness ratings. The dataset has been

randomly split into 70% for training, 10% for validation, and 20% for testing. Note that we then

balanced our testing dataset to be 50% positive and 50% negative similar to that done in [4].

For all the models that required hyperparameters to be tuned, we used the validation set to obtain

the best hyperparameters for each respective model. Also, the hyperparameter settings for each

experiment was fixed (e.g., all LIP results for the five varying cold-start experiment were selected
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based on a commonly “good” set of hyperparameters for all five percentages, and not separately for

each of the five). However, between the two experiments, we allowed for different hyperparameters

as the dynamics of cold-start users and varying the amount of induced sparsity required a different

set of hyperparameters for our model and similarly for the baselines. To evaluate and compare the

performance of LIP we present the F1 measure for the interaction polarity and the link prediction

tasks. Note that the higher the value, the better the performance.

6.1.4.1 Sparsity Experiments

To answer the first question, we compare the proposed framework, LIP, with existing interaction

polarity and link prediction methods. We first present the baselines for the interaction polarity

prediction task followed by those for the link prediction task.

We choose the following representative interaction polarity prediction baselines for comparison:

• uCF:User-based collaborative filtering approachwhere we used the fivemost similar users (in

terms of cosine similarity) based on their helpfulness rating history formaking the predictions.

For details on collaborative filtering please see [190]. We use the user-based collaborative

filtering approach as our first baseline for predicting the user interaction polarities. Here we

present the results where we used the five most similar users (in terms of cosine similarity)

based on their helpfulness rating history for making the predictions.

• MF: Our low-rank matrix factorization method as shown in Eq. (6.2). Here a comparison is

madewith the low-rankmatrix factorizationmethod, that attempts to find a lower dimensional

representation of the user-review matrix. Note this follows the same formulation as that in

Eq.(6.2) where we use the matrices P,Q, S, and H equivalently as they are in LIP for the

predictions.

For link prediction, the representative baselines are presented below and details of the methods

can be found in their respective cited work.
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• SSA: A spectral based method using the signed Laplacian matrix [153] and regularized

Laplacian kernel [191] is used. Due to the fact this method was presented for undirected

networks, we convert the directed link information by making T symmetric, thus resulting

in an undirected network, we use the undirected version of the dataset by removing the

directions of the links, but keep the testing set the same.

• HOC-3: It is an approach that was based on the social balance and status theories [2].

Features for a supervised approach are extracted from triads and also node features (e.g.,

number of incoming positive edges). A total of 23 features are created based on 16 possible

directed triad configurations, and 7 node features. The details of this method can be found in

[4].

• MF: Low-rank matrix factorization method as shown in Eq. (6.1), which was first introduced

in [131]. The final comparison is with the low-rank matrix factorization method, which was

first introduced for this problem in [131]. This is the natural baseline predictor for our model

since LIP is built upon this MF technique. This method optimizes the squared error, has the

regularization hyperparameter V, and uses SGD. We note that it is formulated just as seen in

Eq.(6.1) and the matrices U,V, and T are used equivalently to those found in LIP.

In the first experiment, we are able to simulate a ranging sparsity across each user, since we

have already limited our attention to a subset of the data that is denser than the original dataset.

We remove x% of the links and interactions for each user and vary x in {50, 60, 70, 80, 90}. we

are able to simulate a ranging sparsity across each user. We vary the sparsity of the dataset by

removing 50% to 90% of the data, in increments of 10%.

Experimental Results: The interaction polarity prediction results can be found in Figure 6.3(a).

Most of the time, we see that the baseline MF method outperforms the user-based collaborative

filtering method. Similarly, we have LIP finding significant gains over MF across the levels of

sparsity induced. Another thing to mention is that since we had first increased the density of the

user-review matrix , it is not until the 80% sparsity that the density of the network drops below that
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(a) Interaction Polarity Prediction. (b) Link Prediction.

Figure 6.3: Experimental results with varied sparsity settings.

of the original matrixH. Therefore in fact at 80% sparsity the density of this induced sparse network

is quite similar to that of the original network. We report the results of the sparsity experiments

for the link prediction in Figure 6.3(b). LIP and MF obtain much better performance than SSA

and HOC-3. We are able to observe that LIP performs comparable to the MF method for the lower

sparsity settings, but upon reaching the higher sparsity level, LIP achieves better performance than

MF.

From the results in the sparsity experiment, we have seen LIP’s ability to help alleviate the

sparsity problem found in the interaction polarity and link prediction tasks; thus providing evidence

that our joint framework is able to partially alleviate the sparsity problem inherent in signed net-

works. More specifically, we see a significant improvement in the interaction polarity predictions,

and increasing improvement for the link prediction with the increase of the sparsity.

6.1.4.2 Cold-Start Experiments

Note that one of the main contributions of this work is the ability of the framework to handle not just

the data sparsity problem, but also to help alleviate issues that are commonly faced with cold-start

users in signed networks, which are quite common characteristics in these datasets. Therefore

to answer the second question, we compare LIP with existing algorithms that are able to handle

cold-start users in both of the two prediction tasks.

For this experiment we want to empirically evaluate the robustness of LIP when faced with
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networks having cold-start users. Note that this is a very difficult problem to overcome due to

the fact if there is no knowledge about a user in a certain domain, then it becomes difficult, if

not impossible, to make reasonable predictions involving them. However, since LIP is jointly

predicting the signed links and user interaction polarities, the opinions formulated in one task can

power those in the other task and simultaneously they should be able to gain information for users

that previously had none in one of the tasks.

For the cold-start setting, we choose the following user interaction polarity prediction baselines:

• RG: The random guessing method for user interactions first calculates the class distributions,

and then selects randomly based on that distribution to make predictions for unknown values.

• AvgG: The average guessing method (AvgG), first calculates the average interaction value

found in the entire training set, next it predicts that value for all missing values, and then it

predicts that same value for all other edges in the network that have yet to be assigned.

• MFwRG: We note that the typical matrix factorization method would not be applicable in

this experiment, since if we have no training information for a given user, then the latent

vectors of such users would never be updated. Thus, this would leave the predicted value

to be assigned based on the dot product of two randomly initialized vectors. So instead we

modify MF by adding the condition that if either of the two users’ vectors have not been

updated (i.e., they had no data in the training set and thus are a cold-start user), then instead

of using the dot product as we normally would with MF for predicting links, we instead use

the RG method for the given link.

We note that the typical matrix factorization method would not be applicable in this experiment,

since if we have no interaction information for a given user, then the latent vectors of such users

would never be updated. This would leave the predicted value to be assigned based on the inner

product of two randomly initialized vectors. Thus, we modified MF by adding the condition that

if either of the two users’ vectors have not been updated (i.e., they had no training interaction data
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Table 6.2: Interaction polarity prediction cold-start results.

Method Induced Percent Cold Start Users
5% 10% 15% 20% 25%

RG 0.655 0.655 0.655 0.655 0.655
AvgG 0.667 0.667 0.667 0.667 0.667
MFwRG 0.769 0.764 0.754 0.746 0.739
LIP 0.773 0.771 0.769 0.766 0.763

Table 6.3: Link prediction cold-start results.

Method Induced Percent Cold Start Users
5% 10% 15% 20% 25%

RG 0.641 0.641 0.641 0.641 0.640
MFwRG 0.848 0.837 0.825 0.813 0.797
LIP 0.860 0.858 0.853 0.848 0.839

and are therefore a cold-start user), then instead of using the inner product as we normally would

with MF for predicting links, we instead use the RG method for that given link.

We compare the proposed framework LIP with the following link prediction baselines:

• RG: Randomly guess missing links to be positive or negative based on training data class

distribution.

• MFwRG: This method has the identical extension for the cold-start users as described in

MFwRG for the interaction polarity prediction task.

For these experiments, we vary the percentage of users that become cold start users in a given

task, but do not modify the testing set. We randomly select x% of the users and remove all their

links, then randomly select x% of the users (who we have not already selected) and remove their

interaction information while varying vary x in {5, 10, 15, 20, 25} i.e. the number of cold-start

users from 5% of the training dataset users to 25%, in intervals of 5%, thus making 5 data subsets.

Experimental Results: Table 6.2 holds the results of the cold-start experiments for the in-

teraction polarity prediction task when varying the number of cold start users. The very naive

baseline RG is just shown to provide a reference for the F1 measure, but theMFwRG is expected to

perform quite well. In this table, we are able to observe LIP’s superiority over the baseline methods
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when observing cold-start users. We also see that LIP’s performance as compared to the baselines

drastically increases as the number of cold-start users increases, which is extremely intuitive based

upon the use of the correlation terms. This is because even if a user has no current helpfulness rating

information, LIP is able to transfer information (i.e., their opinions) through the linear mapping

matrices W$ and W� and use information that the user had from their link information.

In Table 6.3, we present the link prediction results when varying the amount of cold-start

users in the training set. Upon seeing these results the advantages of LIP over the other baseline

methods become even more obvious. We note that whenever MFwRG has the ability to learn a

low dimensional representation for a user, it can then perform the prediction using it’s learned

low dimensional latent vectors. But when there is no link information for a given user, then the

user must resort to randomly guessing. Similarly to the interaction polarity prediction task, as the

percentage of cold-start users increases, the performance gap in terms of F1 becomes larger in favor

of LIP having the best prediction.

6.1.4.3 Experiment Discussions

This leads us back to our second question, where we set out to determine if the linking terms based

upon the correlated user opinions in LIP are able to provide a transfer of information between the

two tasks that ultimately have a user’s opinions in one task power the other. Based upon the results

presented in this section, for both the sparsity and the cold-start experiments, we have shown that

indeed LIP is able to utilize the inherent correlations behind the opinions expressed in the two

tasks to boost the performance in both the prediction tasks simultaneously. Next we present our

analysis on the hyperparameters of LIP. We seek to not only to gain a better understanding of the

relation between these two prediction tasks (i.e., [), but perhaps even more important in this study,

is the focus on W, since it controlled the amount of opinion information to be transferred from one

prediction task to the other; specifically the ones that control the correlation terms and the balance

between optimizing the interaction polarity prediction task along with the link prediction task.

Based on the above experimental results we have successfully verified our claim that our joint
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matrix factorizationmodel using additional terms formodeling the fact that user’s in social networks

express their opinions in correlated ways across tasks when faced with sparse datasets. However,

the most obvious claim we are now able to express is that LIP does indeed help alleviate the

cold-start problem over the baseline MF method and the other baselines. In the next subsection we

perform a hyperparameter analysis to gain a better understanding to not only the relation between

these two prediction tasks (i.e., [), but perhaps more importantly in this study is the focus on W,

since it controlled the amount of opinion information to be transferred from one prediction task to

the other.

6.1.4.4 Parameter Analysis

First we will discuss the hyperparameters used in LIP. Thereafter we discuss an analysis on some

of the important hyperparameters in our model.

In this work V1, V2, and V3 are used as the typical regularization hyperparameters andwe noticed

they behave normally. In fact, they could be collapsed into a single regularization hyperparameter

V without much change to the performance (as compared to splitting them into three separate

hyperparameters). The other hyperparameters are quite necessary and typical for joint modeling

(and similarly for cross-domain recommendation problems). For [ this is used to balance between

the two tasks, which is assumed to result in large changes in performance when varying this

hyperparameter greatly. This is because it controls to what extend the optimization is favoring

higher performance (perhaps at the cost of the other) for one of the two problems over the other. As

for W, we have introduced this as a Lagrange multiplier used to solve this challenging optimization

problem. In other words, based on our analysis, it appears there should be a transformation between

the two domains of links and interactions, and to solve this problem we have relaxed this constraint

of finding such a mapping to instead find a mapping with minimal error (since we also assume

the data is noisy). Hence, we introduce the hyperparameter W to solve the optimization problem.

Finally, we have  ! and  � that denote the length of the representations in the link and interaction

domains, respectively. These are the typical hyperparameters for embedding based methods, and

153



15
4

(a) Link prediction. (b) Interaction polarity prediction. (c) Trade-off between the two tasks
(i.e., mean of 6.4(a) and 6.4(b)).

Figure 6.4: Performance variations of LIP on the 90% data sparsity experiment w.r.t. [ and W.

we have observed similar results as other methods that vary the embedding, i.e., the performance

starts to increase, but then drops once the embedding becomes too large. Next we will discuss an

analysis on [ and W as these are the most interesting hyperparameters of LIP.

The hyperparameters [ and W control the balance between optimizing the link prediction and user

interaction polarity tasks, and how strongly to keep the two tasks low dimensional representations

correlated, respectively. In this subsection, we perform an analysis on how changing these two

hyperparameters affects the performance of LIP. We first fix all other hyperparameters (i.e., the

regularization hyperparameters V1, V2, and V3 and dimension sizes  ! and  � ) based upon the

best hyperparameters found against our validation set when performing a grid search over the

hyperparameter space. We evaluate the performance on all paired ([, W) values while we vary

the value of [ as {0.25, 0.5 0.75, 1.0, 1.25} and W as {0.0001, 0.001, 0.01, 0.1}, providing us

with 20 possible combinations for running the grid search. Although the best hyperparameter

settings varied between the two above mentioned experiments, we only display one representative

from the sparsity user experiment, since we have similar observations in every other experimental

setting. We present the analysis on the 90% sparsity experiment since it had the most variation in

performance across the different settings.

In Figure 6.4, we have shown the 3D surfaces for the mentioned combination of hyperparam-

eters. In Figure 6.4(a), we can see that W = 0.01 is shown to clearly be a good region for this

hyperparameter, as both to the left and right the performance in terms of F1 drops for the link
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prediction. However, there is little to no significant difference between the link predictions when

varying [ in the range provided. It can also be noticed that for the interaction polarity prediction task

(seen in Figure 6.4(b)) the larger [ leads to much better performance, which intuitively makes sense

because a larger [ relates to increasing the weight of how much we were to optimize the interaction

polarity prediction as compared to the link prediction task. Unlike what we observed in the link

prediction task, the interaction polarity prediction performs better with a smaller W; meaning the

two tasks have a different preferred weight to be associated with the correlation between the user

latent vectors.

Finally, in Figure 6.4(c) shows that there is a drastic trade-off between the two tasks. Where

if one of the tasks has a large increase in F1, then the other task becomes slightly worse. Thus to

obtain better performance in both tasks, we would want to choose a hyperparameter setting such

that the trade-off between the two tasks is balanced. Based on our analysis such a point would have

W = 0.01, but as for the value of [, there is not a decisive value to choose. Thus, we have shown

that the balance between optimizing the two tasks is not very sensitive, although from the figure it

appears choosing [ = 0.75 has a slight advantage in both of the two tasks.

6.2 Congressional Vote Prediction

Recently there has been an enormous interest in computational approaches to solve political

science related problems, especially in relation to political elections and congressional voting. With

the seemingly ever-growing tension between the two dominant political parties in the U.S. [185],

congressional representatives are receiving immense social pressure towards blindly following their

political party and associated leaders. However, due to the nature of some representatives refusing

to give up their beliefs and ethical grounds, they sometimes vote against their party or cast no vote;

thus resulting in a highly complex system.

Although knowing the voting behaviors in the congressional system are undoubtedly compli-

cated, we remain diligent towards the goal of being able to predict and understand them. If we

can construct better vote prediction models, we could utilize this information to better inform the
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public of the real intentions of those running for re-election on upcoming critical issues. Similarly,

congressional leadership could utilize these models for specifically targeting potential swing voters.

We recognize and identify two sets of effective factors. The first set being ideological factors,

which are well recognized to play an important role in the U.S. congress [192, 193] and come

from both the congressional representatives as well as the ideology of the bills, whose values and

beliefs are woven deep into the content of the bills. The second set of influential factors are social

factors and are in relation to 1) the party affiliations of representatives, and 2) how their past voting

recording intertwines with other representatives. In relation to the first social factor, it is well

known that representatives in the U.S. Congress are polarized [194, 195, 196, 197, 185]; and thus

likely to follow their political affiliation when casting their votes (although not all the time). As for

the second social factor, we propose the voting records to be modeled as a signed bipartite social

network (i.e., contains both positive and negative connections) between the representative and the

bills [116], which opens the door to extracting a plethora of novel predictive features.

We propose an end-to-end framework Multi-Factor Congressional Vote Prediction (MFCVP)

that first utilizes Wikipedia4 pages of the representatives to learn an embedding that encodes

ideological information associated with each representative. Then, for the bills, we use their texts

to directly learn an embedding that encodes their semantic ideological information. Next, we utilize

signed network analysis to first construct a bipartite voting network between the representatives

and the bills, followed by harnessing powerful signed social theories to construct novel features.

Finally, all the extracted features coming from multiple factors are combined to be utilized for vote

prediction.

6.2.1 Problem Statement

To introduce the problem, we first denote the set of = representatives as R = {A1, A2, . . . , A=}.

We let B = [11, 12, . . . , 1<] denote the sequence of bills associated with the past < roll-call

votes for which we know the voting outcomes. These voting outcomes are denoted in the set

4https://www.wikipedia.org/
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Table 6.4: Notations regarding congressional vote prediction.

Notations Descriptions
R The set of representatives.
B The set of past roll-call votes and their bills.
V The set of past votes R gave on B.
B̃ The set of future roll-call votes and their bills.
Ṽ The future votes we seek to predict.
C8 The representative A8 when they are voting.
B 9 The sponsor of bill 1 9 .
2 9 The set of cosponsors for the bill 1 9 .

E8 9 (Ẽ8 9 ) The vote associated with voter C8 on bill 1 9 (1̃ 9 ).

V = {E8 9 |A8 voted on bill 1 9 } and E8 9 ∈ {+,−, >}, which denotes a “yea”, “nay”, or “present”/“no

vote”, respectively. Furthermore, we have the sequence of <̃ future roll-call bills denoted as

B̃ = [1̃1, 1̃2, . . . 1̃<̃]. The sequence B̃ has corresponding votes Ṽ = {Ẽ8 9 |A8 will vote on bill 1̃ 9 }

which we seek to predict . We then denote any additional contextual feature or those extracted from

the past votes as the set X. Note that these notations and others used throughout the paper can be

found in Table 6.4. Finally, we can formally define the congressional vote prediction problem as

follows:

Given a set of congressional representatives R, a sequence of past roll-call votes on the bills B

having associated votes V, features X, and a future sequence of the upcoming roll-call votes on

the bills B̃, we seek to learn a model � as follows:

� : {R,B,V,X, B̃} → Ṽ (6.6)

6.2.2 Overview of Multi-factor Congressional Vote Prediction (MFCVP)

For congressional vote prediction, we must overcome the challenges of how to represent the

underlying factors influencing the voting system and how to handle this added complexity introduced

by incorporating multiple factors. To address these we propose the end-to-end framework Multi-

Factor Congressional Vote Prediction demonstrated in Figure 6.5. More specifically, MFCVP will

utilize ideological factors and social factors, which the latter consists of factors coming from both
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Figure 6.5: The proposed Multi-Factor Congressional Vote Prediction (MFCVP) framework.

a network and political party affiliation perspective. We first explain how these different factors

are represented through both learning embeddings and constructing novel hand-crafted features.

Thereafter, we discuss how the representations of different factors are combined and used for the

vote classification.

6.2.3 Ideology Factors of MFCVP

The first set of factors is ideology factors. It is without a doubt that representatives’ ideology

and ideological information reflected in a bill are influencing how a voter will vote on a bill. To

effectively and comprehensively represent ideology factors in our framework, we recognize and

propose the use of two other entities (besides a bill and a voting representative) which are associated

with ideology factors, namely the sponsor and possible cosponsor(s). These two entities are

essentially representativeswho construct and promote a bill. Hence, we seek to learn representations

about the beliefs and values of the voters, sponsors, and cosponsors, alongwith those that are present

in the bills.

To represent the representatives, many previous works focused on ideal point models [192,

198, 199]. Nevertheless, ideal point methods require many assumptions about voter behaviors
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which are inherently highly complex, so instead, it seems more natural and reasonable to extract

a vector representation from the raw data [195, 193] (e.g., Wikipedia pages that are collectively

written about the representative from the large online community). Furthermore, extracting vector

representations are practicallymore feasible than attempting to compute ideal points [192]which are

also open for biases in their human construction. Given the more recently developed deep models

for extractingmeaningful representations for text documents, we propose to utilize doc2vec [200] as

an efficient embedding method to represent the ideological factors. Doc2vec has shown significant

improvement in many approaches [201, 202].

We use Wikipedia pages to learn a representation for each of the congressional representatives

using doc2vec as illustrated in Figure 6.5. We combine all textual information about a representa-

tive from their Wikipedia profile page as a single document. Then, we train a doc2vec model which

learns a compact embedding about each entire document (i.e., a representative’s Wikipedia page)

encoding the semantic information about a representative including their political ideology. Due

to the fact that voters, sponsors, and cosponsors are all representatives, we utilize the same repre-

sentation obtained through the learned embeddings of our trained doc2vec model (i.e., the doc2vec

model fed with Wikipedia pages of representatives) as the ideology factors for the representative in

all three roles. We should emphasize that in our experiments we utilize historical Wikipedia pages

to ensure there is no data leakage.

The usefulness of Wikipedia is that this ideological perspective is less susceptible to biases or

falsehoods since it is maintained by a large community. However, other data sources could be used

to obtain the ideological representation, such as the generated content of voters on social media

(e.g., their tweets on Twitter5 or their campaign financial information as to which organizations are

supporting them. We leave connecting other sources of data about the congressional representatives

as one future work. Finally, we let �C8 , �B 9 , and �2 9 denote embeddings of the voter C8 ∈ R, the

sponsor B 9 ∈ R sponsoring the bill 1 9 ∈ B ∪ B̃, and the cosponsor B 9 ∈ R cosponsoring the bill

1 9 ∈ B ∪ B̃ for the votes E8 9 ∈ V ∪ Ṽ.

5http://www.twitter.com
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The textual content of the bill offers very essential information. In fact, the text of a bill

reflects both the conscious and sometimes even subconsciously instilled ideologies of the sponsor

and cosponsors who prepared it. Therefore, it is of great importance to effectively represent the

semantic information about a bill in a compact and efficient way. To achieve this, similar to our

embeddings for the representatives, we utilize a doc2vec model to represent the bills, where each

bill’s textual data (after some preprocessing) is considered as a document. Let �1 9 be the learned

embedding of the bill 1 9 ∈ B ∪ B̃. Note that we train the bill doc2vec model on B.

We can now succinctly represent the set of embedded ideological features that we will utilize

when considering the relation between a voter C8 and a bill 1 9 (along with their sponsor and

cosponsor(s), B 9 and 2 9 , respectively) as E8 9 = {�C8 , �1 9 , �B 9 , �2 9 }.

6.2.4 Social Factors of MFCVP

Having discussed the ideological factors that get incorporated into MFCVP, here we discuss the

more novel social factors (with an emphasis on the network features) that have been commonly

overlooked by previous methodologies and analyses in relation to the predictions and understanding

of congressional votes. We propose to categorize these social factors into two main groups as

follows: 1) political party affiliation features, and 2) features coming from the network constructed

from the past voting records. Next we discuss these two feature categories.

6.2.4.1 Party Features

The inspiration of these features for our proposed framework comes from the fact that sometimes

there is an influence coming from voters of a political party to cast their votes aligned with the

party’s interest.

Given a single vote E8 9 made by voter C8 on bill 1 9 that was sponsored by B 9 and cosponsored by

the set of representatives 2 9 , we construct the corresponding features %C8 , %B 9 , and %2 9 to represent

their party affiliations, respectively. More specifically, %C8 and %B 9 are one-hot vectors indicating

the affiliated party of the voter and sponsor, respectively. Then for the set of cosponsors 2 9 we
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obtain the distribution of the cosponsors across the party affiliations. Note that if there are no

cosponsors, we simply use a vector of zeros for %2 9 . These three features are represented in the set

of features P8 9 = {%C8 , %B 9 , %2 9 }.

6.2.4.2 Signed Bipartite Network Features

Typical network representations that are used for congressional voting records are the two one-

mode networks coming from a bipartite network which ultimately separates and/or condenses

the “yea” and “nay” votes [203]. However, this is inherently destined to lose drastic amounts of

vital information that could have perhaps been extracted if using network analysis techniques that

incorporate the “yea” and “nay” votes simultaneously. Therefore, we propose a more advanced

representation - signed bipartite network.

Let G = {{R ∪ B},V} denote the signed bipartite network that is constructed using the set

{R ∪ B} of = +< nodes (i.e., the representatives and bills), and set of links (i.e., votesV) between

them where we treat “yea”, “nay”, and “no vote” as a positive, negative, and non-existent link in

the signed network. Now, given that we have modeled the voting history in the form of a signed

network, we can utilize signed social theories to extract insightful features. More specifically, we

utilize balance theory, which colloquially can be summarized as “a friend of a friend is a friend”

while “an enemy of a friend is an enemy” [30, 29].

The first set of features we construct when considering the relationship between a voter C8 and

a bill 1 9 can be seen in Figure 6.6(a). We can observe that we want to extract information on how

the voter C8 and the sponsor B 9 have interacted together on other bills 1: to gain information on

how C8 might vote on the current bill 1 9 . We note that there can be 9 possible situations when

considering the triplet (C8, 1: , B 9 ), since both C8 and B 9 can have either a positive, negative, or no

link to the other bills 1: ∈ B\{1 9 }. We utilize this information to construct a feature vector

#�C8 B 9
that represents the distribution over the nine aforementioned possibilities where the triangles

involving an even number of negative links are adhering to balance theory. The distribution over

the number of balanced and unbalanced triangles along with the number of open structures (i.e.,
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(a) #�C8 B 9
(b) #(C8 B 9

Figure 6.6: Illustrations of the signed bipartite network features.

those involving at least one “no link”) should provide great insight for our model to discover the

patterns related to this fundamental social theory. Signed triangle distributions have also recently

been used in benchmarking generative signed network models [204], since they hold such rich

information about a signed network.

We note that these features are similar to the ones utilized in the seminal work [4] that focused

on building a supervised model to predict the missing sign between C8 an B 9 , but here we use B 9 as

a proxy for their introduced bill 1 9 . This relates to balance theory because the signed social theory

would suggest that if C8 has voted equally to B 9 (i.e., E8: = E 9 : ), then it is likely that C8 should think

positively towards 1 9 . Similarly, we construct a feature vector #�C82 9 where instead of using B 9 , we

obtain the average over the cosponsors in the set 2 9 .

We furthermore extract the second type of feature from our constructed signed network. In

the first network feature (described before), we sought to discover how the overall distribution of

balance between the votes from the voter C8 and the current sponsors and cosponsors (i.e, B 9 and

2 9 ) towards the rest of the bills 1: . However, unlike the first features, here we want to directly

observe how C8 has interacted on the bills sponsored by B 9 or sponsored by someone in 2 9 (i.e., a

more personalized set of social features), which is related to the polarity of their interactions in the

signed network [205]. In Figure 6.6(b) we show an illustration for how we construct the feature
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vector #(C8 B 9 having length 3. Given the fact that we want to extract information about how C8 might

vote on 1 9 , we observe the distribution over the three possible votes (i.e., positive, negative, or no

link in terms of the signed network) that C8 has given to all other bills 1B9 that were also sponsored by

B 9 . Similarly, we construct the feature vector #(C82 9 , but rather than observing the vote distribution

over the set of bills 1B
9
, instead, we average over 12

9
, which denotes the set of bills sponsored by the

cosponsors 2 9 (who has cosponsored 1 9 ).

Finally, we construct the full set of network features N8 9 = {#�C8 B 9 , #
�
C82 9

, #(C8 B 9
, #(C82 9

}, where

|N8 9 | = 24. Note that these network features are in fact general and if given additional context (e.g.,

the connections between the voters, sponsors, and cosponsors on Twitter), we could easily extend

these ideas to obtain a larger social context between the representatives; we leave this as future

work along with the use of advanced signed network embeddings [206].

6.2.5 Classification Details of MFCVP

Now that we have discussed all the features coming from multiple factors, we next discuss how we

can utilize them together for training a model for congressional vote prediction. We note that our

framework is flexible in that the choice of the classifier is not fixed and can be chosen based on the

desired outcome. One choice is to utilize a random forest [207] since it is typically an easy off-the-

shelf model to train and also have the added benefit of being interpretable. More specifically, feature

importance can be calculated from this model that can give insight into which features are more

important for the correct classification of the votes (this will be shown in Section 6.2.6.5). Another

choice could be made to utilize the power of deep learning [208] for obtaining perhaps better

performance in prediction, but losing the ease of interpretation (although we note that interpreting

deep neural networks is a current hot topic field in itself). In this work, we utilize both random

forest and a deep neural network as classifiers.
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Table 6.5: US Congress dataset statistics.

113th House of
Representatives

Total
Dataset

Train
(80%)

Dev.
(10%)

Test
(10%)

# roll-call votes 499 400 49 50
# total

“Yea” votes 137,926 110,882 12,407 14,637

# total
“Nay” votes 68,487 54,874 7,790 5,823

# total
“Present”/No votes 8,929 6,934 902 1,093

6.2.6 Experiments

To evaluate the performance of the proposed framework MFCVP, we conduct a set of experiments

for predicting individual representative votes and the overall outcome of the roll-call vote for a set

of new incoming bills when giving a training set of historical information. Through the conducted

experiments, we seek to answer the following research questions:

• Q1: How does the proposed framework perform on congressional vote prediction?

• Q2: How different factors contribute to the congressional vote prediction?

Next, we describe the dataset followed by experimental setting. Then, we describe the base-

lines methods and comparison results. We conclude this section by presenting experiments and

discussions on factor analysis.

6.2.6.1 Dataset and Data Collection

For our experiments, we have focused on the 113th U.S. Congress House of Representatives. We

collected the roll-call vote data along with the sponsor, cosponsor, and party affiliation from the

Govtrack database6. After obtaining this dataset, we filtered out the roll-call votes not associated

with a bill, joint resolution, concurrent resolution, or a simple resolution; for example, roll-call

votes related to amendments are not included in our dataset. We obtained ideological embeddings

6https://www.govtrack.us
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for each of the bills based on the bill’s text, which we obtained from the Library of Congress7.

Ultimately, we split the dataset chronologically into three sets i.e., a train set, a dev set, and a test

set as shown in Table 6.5. The training set is constructed with roughly the first 80% of the roll-call

votes and all happened before March 5, 2014. Thus, as we mentioned before, to ensure no data

leakage, we searched the historical Wikipedia profile pages for each of the representatives to find

the date closest to but before March 5, 2014; this data was then collected and used to obtain our

ideological embeddings.

6.2.6.2 Experimental Settings

First, we obtain the results for the prediction of individual representative votes. Next, we utilize

these individual vote predictions to get the aggregated prediction as to whether the roll-call vote

will pass or fail (which is the overall outcome of the roll-call vote). Since our MFCVP framework

is flexible in utilizing different classifiers, we utilize a random forest and a deep neural network.

For random forest we utilize the scikit-learn library and we used the PyTorch library for our neural

network implementation. We denote these two as variants of our framework as MFCVP_RF, and

MFCVP_NN, respectively. For the random forest, we use the library default settings. For the

deep neural network model (see Figure 6.5), we employ a multi-layer fully connected network with

Leaky ReLU (Rectified Linear Unit) [94] as the non-linear activation function. Hyperparameters

are set by the grid search via evaluating the framework on the dev set. Using the grid search, the

number of layers is set to 5 with 100 hidden units and no regularization is utilized. We utilize

ADAM [94] as the optimization algorithm whose learning rate starts from 0.01 and is adjusted

dynamically every 100 optimization steps with the decay rate of 0.9. Each simulation is run 2000

steps with the batch size of 100 votes at each step. The embedding size of doc2vec model is set to

50. We repeat each simulation five times and report the average F1 score and accuracy in regards

to the test set.

BaselinesMethods: To show the effectiveness of our proposed frameworkMFCVP, we present

7https://www.congress.gov
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a set of baseline congressional vote prediction methods and discuss why we have selected these

baselines from a political standpoint.

• Random Guess: This method performs a random guess when presented with a vote Ẽ8 9 ∈ Ṽ

to predict for voter C8 on a future bill 1̃ 9 . The random guess is based on the class distribution

of “yea”, “nay”, and “no vote” from the set of past votes V. This method is selected to just

give context into how difficult this problem is as compared to the most naïve approach.

• Personalized Random Guess: Extending the Random Guess method, here rather than a

global class distribution, we extract a personalized class distribution for each voter. In

other words, to guess the vote Ẽ8 9 ∈ Ṽ we extract the class distribution from the set

{E8: |∀1: ∈ B and E8: ∈ V}. This method is used to test if indeed individual voters

have their own unique patterns in terms of their vote distribution (e.g., one representative

might abstain and not vote significantly more often than another).

• Party Voter: This method forces all the representatives to vote aligned with the political

parties. More specifically, for predicting a vote Ẽ8 9 ∈ Ṽ if the voter C8 has the same party

affiliation of the sponsor B̃ 9 of bill 1̃ 9 , then we predict “yea” and otherwise we predict “nay”.

• Sponsor Biased Voter: Given a vote Ẽ8 9 ∈ Ṽ to be predicted, first the sponsor B̃ 9 is obtained

from 1̃ 9 , and thenweobtain the set of all past votes {E8: |E8: ∈ V and B̃ 9 is the sponsor of 1: ∈

B}. This represents the votes that voter C8 has given on past bills 1: that were also sponsored

by B̃ 9 and we choose the highest vote type over the class distribution. The Sponsor Biased

Voter does not necessarily adhere to the political affiliation when voting, but they base their

vote on their past experiences with the sponsor of the current bill. In other words, if they

have liked (i.e., voted “yea”) the past bills of this sponsor, then they will again vote “yea”,

having similar reasoning for voting “nay” or “no vote” on a bill.

• Top-K Bills: When seeking to predict the vote Ẽ8 9 ∈ Ṽ this method first obtains the

ideological bill embedding �1 9 and then finds the closest  bills 1: ∈ B: based on their
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Figure 6.7: Performance evaluation of MFCVP predicting individual representative votes.

embeddings �1: . Top-K Bills method solely bases their vote on the ideological factors of

the proposed bills text. That is to say, predicting the votes using the Top-K Bills method

ignores all direct or indirect party affiliations and allows the voter to cast their vote only

based on their ideologies. To select hyperparameter  , we varied the value of  in the set

{1, 3, 5, 8, 10, 20, 30} while predicting on the dev set; which resulted in  = 8 being the best

performing value. We utilized the Euclidean distance for determining the closest  bills

based on their embeddings.

To answer the researchQ1, we compare the proposed frameworkMFCVPwith the representative

baselines for both the local individual representative vote level and also for the global overall roll-

call vote. Similar to MFCVP variants, we repeat the Random Guess, Personalized Random Guess

methods 5 times and report the average F1 score and accuracy (since they are non-deterministic

methods).

6.2.6.3 Individual Representative Vote Predictions

The results are shown in Figure 6.7. Based on the results presented in this figure, we make the

following observations:

• Among the baselines methods, sponsor voter approach outperforms the others. This shows

the fact that the historical relations between a voter and sponsor have a significant impact
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on determining the vote status of a voter for an upcoming bill. Further, as described before,

our proposed framework, unlike sponsor voter method, incorporates these relations in a

sophisticatedway by extractingmore principled features from the constructed signed network.

• Comparing Top-K bills method with party voter, we can note that the content of a bill is more

important than blindly voting based on a bill’s sponsor party. In fact, the low performance

of party voter method supports the argument that despite the polarized voting behavior of

the U.S. Congress, some representatives adhere to their prior beliefs and ideology instead

of merely always voting with or against a proposed bill based on the sponsor’s political

affiliation.

• Personalized random guess outperforms the random guess. This is not surprising, as per-

sonalized random guess incorporates, not effectively though, the prior history of how a

representative voted on past bills.

• The variants of the proposed framework MFCVP outperform all baselines methods and in

some cases very significantly. This framework, in a comprehensive and sophisticated man-

ner, incorporates various influencing political factors associated with congressional voting.

Although MFCVP_NN achieves slightly better performance than MFCVP_RF, we opt to

use the random forest for the rest of experiments since it provides with more interpretable

insights into the proposed factors.

Therefore, from a local congressional vote perspective, this shows that MFCVP can be utilized

as a reliable congressional vote prediction framework. Next, we investigate the global predictions

as to whether MFCVP can accurately detect when a proposed bill will pass or fail.

6.2.6.4 Overall Roll-call Vote Outcome Predictions

Here, we utilize the predictions from the local level (i.e., the individual representative vote predic-

tions) to obtain the overall global roll-call vote outcome of whether the bill will pass or fail. The
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Figure 6.8: Performance evaluation of MFCVP predicting the overall roll-call vote outcome.

results are shown in Figure 6.8. Based on the results presented in this figure, we make the following

observations:

• The first observation is that although the personalized random guess performedworse than the

party voter for determining individual representative votes, here it significantly outperforms

the party votermethod. Thismeans that for individual representative votes the better predictor

is based on their political party. However, when aggregating all representative votes to the

prediction of whether the bill with pass/fail, using the representatives previous voting patterns

is better than just considering their party.

• Next we observe a similar swap in that the Top-K bills is now outperforming the Sponsor

Voter model. This is interesting since it implies that the overall pass/fail decisions for roll-

call votes are happening more likely due to the correlation the voted upon bill has with past

similar bills as compared to the relationship all the voters have with the sponsor of the bill.

More specifically, this indicates two phenomena: 1) the representatives are quite stable in

their ideologies; and 2) when averaged out, the prediction of whether a bill will pass or fail is

better predicted through the representatives history according to the bill content as compared

to their relation to the sponsor of the proposed bill.

• Although the MFCVP_ NN is better able to predict the local individual representative votes

better, it is likely to have slightly overfit the training data (since the models were trained on

the local voting patterns) and thus cannot generalize as well when aggregated to the global
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level. However, when pairing the random forest model with our MFCVP framework (i.e.,

MFCVP_ RF), we see it enjoys a better generalization over the neural network variant.

Therefore, based on the results for both the local individual representative predictions as well as

the global pass or fail aggregated predictions for the proposed bills, it is clear that our MFCVP

framework is a superior and effective methodology for predicting the congressional votes.

6.2.6.5 Political Factor Analysis

The research question Q2 is concerned with the contribution of political factors for congressional

vote prediction. To answer this question, we conduct some experiments for the local individual

representative congressional vote prediction. We focus our attention on using the random forest

(i.e., MFCVP_RF ) as it provides us with feature importance values in an explainable manner.

First, we compute the importance of the three essential factors in our framework i.e., ideological,

network and party factors (the latter two are social factors) using the Gini importance [209].

Figure 6.9 shows the importance of these three factors where Embeddings indicate the contribution

of ideological factors. Based on this figure, we make the following observations:

• Embeddings (i.e., ideological factors) are the most important features in individual vote

prediction. This shows that ideological factors play a central role in determining a vote cast

on a bill and many representatives adhere to their ethics and beliefs.

• Quite interestingly, network features turn out to be very important. This indicates 1) the

interactions and connections amongU.S. House of Congress representatives have a significant

bearing on the voter’s voting behavior, and 2) any political vote prediction should not merely

focus on ideological factors and avoid overlooking the role of social networks established

among representatives and their historical votes, since it is quite effective in vote prediction.

• In line with the performance of the Party Voter baseline (see Figure 6.7), party features

have an inconsequential effect on individual vote prediction. This is politically reassuring
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Figure 6.9: Feature analysis using the feature importance values from MFCVP_RF.

as representatives do not submissively follow the inclination of the political party of a bill’s

sponsor. In the future, we will follow up more on this line of research to investigate if such a

phenomenon persists at other points in time throughout history in the U.S. House and Senate

or even in other country’s political systems.

Now, we narrow down the feature analysis illustrated in Figure 6.9 to investigate contributing

features in each of the three overall factors in more detail. We make the following observations

according to the results shown in this figure:

• Among the ideological factors, the bill embedding has the highest contribution. This seems

reasonable since, after all, it is a bill that is being voted on.

• Interestingly and somehow surprisingly, the embeddings associated with cosponsors aremore

effective than those of sponsors. It is known that over half of bills being introduced into

U.S. Congress are cosponsored [210]. Therefore, based on this fact, it allows our model

to categorize whether a given bill has received no cosponsors, or when aggregated across

all cosponsors the average representative embedding can provide insight into whether it has

received bipartisan support, or only from a single party. This is due to the fact that the

embeddings of the representatives are designed such that they hold their ideology and thus

likely easily separable in the embedded space for our model.
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• Almost the entire contribution of the party features (though very insignificant compared to

other factors) stems from the cosponsors party of bills. Similar to ideological factors, this

indicates that cosponsors play an important role whose even party affiliation should be taken

into account, but as expected, the learned embeddings about the representative’s ideology are

significantly more important than just knowing the political party they are associated with.

• However, for the network features, we observe the opposite as compared to the embedding

and party features in that here the sponsors have a stronger signal. This is likely because

aggregating over all the votes a representative has given to a bill proposed by any of the

current cosponsors (which tends to be a very large set of votes) results in a more noisy signal

as compared to the party or embeddings features (which is just on the order of the number of

cosponsors) that can retain most of the information.

• When comparing between the two network features, we observe that the features related

to balance theory were more insightful than the social ones that looked at how a voters

behavior was with past proposed bills by the same (co)sponsor. One reasoning for this is

that the balance theory based features are more principled and looking at a more global view,

as compared to the local social features that only look at bills previously proposed by that

(co)sponsor. Also, this is likely due to the fact our balance related features are based on

pseudo-triangles we extracted from our constructed signed bipartite network (that we note

naturally does not contain triangles) and are related to the features extracted in [4] where they

were observed to be well suited for predicting whether the sign of a missing link would be

positive or negative.
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CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

In this chapter1, we provide a summary of our research result and present promising future research

directions.

7.1 Summary

In this dissertation, we proposed novel research in the four major directions of network analysis

with negative links - (1) signed network measuring; (2) signed network modeling; (3) signed

network mining; and (4) signed network applications.

For measuring signed networks, we first performed an analysis of the properties and theories in

signed networks taking into consideration both positive and negative links both individually, and

holistically together. Next, we performed an initial and comprehensive study of node relevance

measurements in signed networks. We built numerous local and global measurements guided by

signed network properties and balance theory. We further study the impact of signed relevance

measurements on two signed network analysis tasks, i.e., link sign prediction and tie strength

prediction. Experimental results demonstrate that (1) dedicated efforts are necessary to build

signed relevance measurements with negative links; (2) global methods significantly outperform

local methods for link prediction. Thereafter, we developed a Deep Signed Centrality (DeSCent)

measure that allowed us to harness the power of deep learning to extract out and learn these complex

patterns between positive and negative links while identifying a signed centrality score for each

user. Furthermore, the deep framework allows for centrality to be calculated across networks.

In other words, training a model in one signed network learns a general enough mapping such

that it can be efficiently applied to extract out the centrality of users in other signed networks.

Thus, we developed a novel objective for DeSCent based on status theory and balance theory that

1Tyler Derr. “Network Analysis with Negative Links.” In Proceedings of the 13th ACM
International Conference on Web Search and Data Mining (WSDM). 2020.
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utilizes higher-order structures. Then, to evaluate the effectiveness of our approach, we conducted

experiments using the signed centrality scores for signed link prediction. These experimental results

on four real-world signed networks have shown the superiority of DeSCent over other recently

proposed signed centrality measures. Furthermore, experiments were performed to validate the

usefulness of the deep framework for learning parameters in one network that are general enough

to extract meaningful centrality scores in other signed networks, which further strengthens the

applicability of the proposed approach.

For modeling signed networks, we proposed our Balanced Signed Chung-Lu model (BSCL),

which was the first signed generative network model. BSCL was designed with the objective of

preserving three key properties of signed networks - (1) degree distribution; (2) local clustering

coefficient; (2) positive/negative link ratio and (3) proportion of balance/unbalanced triangles sug-

gested by balance theory. To achieve this, we introduced a triangle balancing parameter and a

sign balancing parameter to control the distribution of formed triangles and signed links, respec-

tively. An automated estimation approach for the two parameters paired with another parameter

for controlling how often to create triangles versus inserting a random edge allows BSCL to take

as input a signed network, learn appropriate parameters needed to model the key properties, and

then output a similar network maintaining the desired properties. In addition, we also provided an

initial investigation of balance theory in signed bipartite networks that: (1) extends the definition

in the form of signed butterfly isomorphism classes; (2) validated that indeed balanced signed

butterflies are found significantly more often as compared to unbalanced in signed bipartite net-

works; (3) leveraged balance theory for the construction of multiple sign prediction methods; and

(4) performed experiments on three real-world signed bipartite networks to provide insight into

both balance theory and sign prediction in signed bipartite networks.

For mining signed networks, we proposed the first signed graph convolutional network (SGCN)

and examined since unsigned graph convolutional networks (GCNs) are built on the assumption

of homophily, that to apply the local neighborhood aggregation the technique could not easily be

reused with the introduction of negative links. Hence, we built a novel aggregation scheme for
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SGCN built on balance theory and how the positive and negative links interact with each other

along the balanced/unbalanced paths we defined. This allowed us to bridge the gap between

the recent advances in unsigned GCNs and the domain of signed network analysis. Using our

constructed signed graph convolutional network, we performed empirical evaluations through

experiments on four real-world signed networks. Comparing against the state-of-the-art signed

network embedding algorithms, we had shown the superiority of the SGCNs when performing the

classical link sign prediction task. Thereafter, seeking to develop a more universal signed network

embedding method, we proposed the idea for network transformation based embedding, namely

role-based signed network embedding (ROSE). Essentially the idea is to transform the initial signed

network into nodes being transformed to a network where they appear multiple times (one instance

of the node per role, e.g., in/out perspective). This led to the creation of an unsigned network

consisting of multiple viewpoints for each node from the original network, and after performing a

traditional unsigned network embeddingwe are able to aggregate back themultiple roles/viewpoints

to construct an embedding for each of the nodes in the original signed network. Empirically we

discovered this is surprisingly very effective and achieved state-of-the-art performance on the link

and sign prediction tasks while not relying on social theories.

For applying signed networks, we proposed LIP the joint model that can predict both the polarity

between users as well as the interaction polarity scores between users and content generated by

other users. The framework is built on harnessing the opinions from both problems, and since

we show these opinions are correlated, we were empirically able to help alleviate the cold-start

problem that resides in seeking to predict the polarity of both the user-user and user-content links

in a real-world dataset. In addition, we presented a comprehensive congressional vote prediction

framework MFCVP, that is capable of harnessing both ideological and social factors. We modeled

the historical votes in congress between themembers of congress and the bills they are to vote on as a

signed bipartite network and then extracted network features in addition to other ideological features

coming from document embeddings and finally party affiliation features. We furthermore, were

able to discover the most influential attributes in congressional vote prediction while discovering
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simply predicting based on party affiliations have significantly worse performance. Ultimately, we

showed that the proposed signed network features while being informative are having significant

role at the congressional vote prediction.

7.2 Future Directions

In this section we present some possible future directions across the major areas of signed

network analysis in relation to each of the major directions of measuring, modeling, mining, and

applying.

• Tie Strength Prediction in Signed Networks: For measuring, in Chapter 2 we presented

a set of local and global signed node relevance measurements and performed an empirical

evaluation on both the sign prediction and tie strength prediction problems. However, this

initial effort just scratched the surface of what can be done in this direction with dedicated

efforts. For example, this task can be performed with using only the network structure, or

with the added assumption of having additional side information associated with the links

and/or nodes, such as link creation timestamps, chat logs between users, comments associated

with the links, account creation time, etc.

• Deep Generative Modeling of Signed Networks: Recently, there has been a rapid devel-

opment of generative graph models for unsigned or node attributed networks that utilize

deep learning on graph techniques ranging from generative adversarial networks (i.e., GAN-

based) [211], recurrent neural networks (i.e., RNN-based) [79], graph recurrent attention

network (i.e., GRAN-based) [212] variational autoencoders (VAE-based) [78], and self-

attention-based [213]. Thus, to improve upon our BSCL method presented in Chapter 4, the

development of a deep generative modeling would be of interest. We refer the readers to a

recent survey on this general topic [214].

• Attack and Defense Methodologies in Signed Networks: Although there has been some

efforts created to both attack and defend against adversarial attacks on traditional network
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embedding and graph neural network models (e.g., [215]) this area is recently developed and

still evolving. With the given the increased polarization online and social media networks

being one of the major areas of concerns for such attacks, both the attacks and defenses

are likely to be improved by utilizing this additional information of negative links, such as

blocked users, unfollowings, etc. We refer the readers to a recent survey on this general

topic [216].

• Understanding and Predicting Unfollower Relations in Online Social Media: One im-

portant aspect of signed network anlaysis is that it provides a more realistic viewpoint of

the underlying system we seek to model with a network (i.e., set of nodes and edges linking

them together). However, most signed network analysis thus far has not been able to focus

on many mainstream social media sites (such as Twitter), give the lack of data available. For

example, Epinions was a product review website that although having negative ties, only later

released this this data anatomized for research purposes. Hence, to push the frontier forward

in signed social network analysis it is important to understand and characterize which types

of interactions online can lead to the modeling of both direct (e.g., unfollowing [217]) and

indirect (e.g., negatively commenting on another user’s post [218]) negative links in social

media.
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