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Abstract

Quantitative trading and investment decision making are in-
tricate financial tasks that rely on accurate stock selection.
Despite advances in deep learning that have made signifi-
cant progress in the complex and highly stochastic stock pre-
diction problem, modern solutions face two significant lim-
itations. They do not directly optimize the target of invest-
ment in terms of profit, and treat each stock as independent
from the others, ignoring the rich signals between related
stocks’ temporal price movements. Building on these limi-
tations, we reformulate stock prediction as a learning to rank
problem and propose STHAN-SR, a neural hypergraph archi-
tecture for stock selection. The key novelty of our work is the
proposal of modeling the complex relations between stocks
through a hypergraph and a temporal Hawkes attention mech-
anism to tailor a new spatiotemporal attention hypergraph
network architecture to rank stocks based on profit by jointly
modeling stock interdependence and the temporal evolution
of their prices. Through experiments on three markets span-
ning over six years of data, we show that STHAN-SR signif-
icantly outperforms state-of-the-art neural stock forecasting
methods. We validate our design choices through ablative and
exploratory analyses over STHAN-SR’s spatial and temporal
components and demonstrate its practical applicability.

1 Introduction
The stock market, a financial ecosystem involving trans-
actions between businesses and investors, observed a mar-
ket capitalization of more than $68 trillion globally as of
the year 2019.1 Stock trading presents opportunities that in-
creasingly attract traders and investors to utilize the market
as a platform for investing and forecasting risk to maximize
profit. However, making the right investment decisions and
designing trading strategies has many challenges due to the
market’s highly volatile and non-stationary nature (Adam,
Marcet, and Nicoli 2016). Recent advances in deep learn-
ing present a promising prospect in quantitative trading and
stock prediction (Cavalcante et al. 2016).

However, the vast majority of modern neural stock pre-
diction solutions have two significant drawbacks. First, they
∗Equal contribution.
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1https://data.worldbank.org/indicator/CM.MKT.LCAP.CD/

Figure 1: Illustration showing that more accurate stock pre-
dictionR2(↓MSE),C1(↑Acc.) may not always be more prof-
itable than less accurate methods R1(↑MSE),C2 (↓Acc.)

are not directly optimized towards the target of investment
as they do not factor in the expected earned profit (Feng
et al. 2019b). This gap arises because stock prediction is
commonly framed either as a classification task to bucket
stock movements (price rise, fall or no significant change)
or as a regression task to predict stock prices, rather than se-
lecting the stocks with the maximum expected profit (Wang,
Wang, and Li 2020; Li et al. 2020). Consider the toy example
shown in Figure 1, where we show that methods with high
prediction performance do not always lead to the most prof-
itable selection of stocks. Such classification and regression
are optimized towards price movement accuracy or minimiz-
ing the error in predicting the stock return, and not necessar-
ily towards profit directly. This gap hints towards the dispar-
ity between optimizing predictive performance and optimal
stock selection for maximizing profit and leads us to think
towards a new direction of stock selection, where both pre-
dictive performance and the expected profit are jointly and
directly optimized.

The second drawback is that the majority of existing
work (Feng et al. 2019b; Li et al. 2020; Poli, Park, and
Ilievski 2020) treats stock movements to be independent of
each other, or utilizes an oversimplified model of the stock
market with a graph consisting of pairwise relations between
individual stocks when in reality, this is contrary to true
market function (Diebold and Yilmaz 2014). Often, stocks
are related to each other, and there exist rich signals in the
complex higher-order relationships between stocks (or com-
panies) (Nobi et al. 2014; Sawhney et al. 2020b). Publicly
available company information can be used to identify con-
nections between stocks that might influence other stocks’
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Figure 2: Industry and corporate relations (hyperedges)
among stocks can be collectively represented through hyper-
graphs. Price trends of stocks in a hyperedge are correlated.

prices, such as those stocks having the same CEO or be-
longing to the same industry. We hypothesize that stocks
are often related through higher-order relations as a collec-
tive group. For instance, Figure 2 shows that related stocks
collectively exhibit synchronous price trends. In light of the
recent COVID-19 outbreak, we observe that companies be-
longing to industries like travel and transportation observe
a fall in stock prices, as opposed to the observed rise in
stock prices of Healthcare related stocks. Hypergraphs be-
ing a generalization of graphs, can represent such collective
higher-order relations between multiple stocks (companies)
simultaneously through hyperedges, as shown in Figure 2.

We formulate stock prediction as a learning to rank prob-
lem (Sec. 3.1), where our model is directly optimized to-
wards ranking profitable stocks. We model the higher-order
interdependence between stocks as a hypergraph built us-
ing three different types of stock relations, based on domain
knowledge. We then propose STHAN-SR: Spatio Temporal
Hypergraph Attention Network for Stock Ranking, a hy-
pergraph-based neural architecture for stock prediction. We
propose a Hawkes process-based attention mechanism over
the temporal trends in stock prices (Sec. 3.2). STHAN-SR
learns the collective synergy between stocks by combining
spatial hypergraph convolutions (Sec. 3.3), with a temporal
Hawkes attention mechanism through hypergraph attention
over stock features to capture the spatial and temporal de-
pendencies in stock movements (Sec. 3.4). Through simu-
lations on real-world data of three markets (Sec. 4.1), we
show that STHAN-SR significantly outperforms state-of-
the-art methods in terms of both profit: return, risk-adjusted
return: Sharpe Ratio and ranking (Sec. 5). Lastly, we per-
form an ablation study (Sec. 5.2) and exploratory analysis
(Sec. 5.3, 5.4) to contextualize each component’s effective-
ness and pave the future directions towards more hypergraph
problems involving time-evolving features (Sec. 6).

The contributions of our work can be summarized as:

• We propose a novel Spatio Temporal Hypergraph Atten-
tion Network that models inter stock relations of varying
types and degrees as a hypergraph for stock ranking.

• We combine temporal Hawkes attention with spatial hy-
pergraph convolutions through hypergraph attention to

capture correlations in the movements of related stocks
and the temporal evolution of their historical features.

• Through experiments on three real-world stock indexes
in NYSE, NASDAQ, and TSE markets, over 2,852
stocks spanning over 1,174 trading days, we demonstrate
STHAN-SR’s applicability to quantitative stock trading.

2 Related Work
Conventional Methods in Finance Stock movement pre-
diction spans various methods, commonly formulated as re-
gression and classification problems. Financial models con-
ventionally focused on technical analysis and relied only
on numerical features (Wang and Leu 1996). Newer models
based on Efficient Market Hypothesis are categorized under
fundamental analysis, and account for stock affecting fac-
tors beyond numerical ones such as financial news, social
media, earnings calls, etc. Despite their success, a limitation
of these methods is that they assume stock movements to
be independent of each other hindering their ability to learn
latent patterns for the study of interrelated stocks. A sec-
ond major limitation is that prior works are not directly opti-
mized for maximizing profit as they do not explicitly select
the top stocks with the highest expected revenue.

Contemporary Methods A new line of work revolves
around employing graph-based methods to represent pair-
wise relations between stocks using metadata, such as stock-
industry data and links between company CEOs (Sawhney
et al. 2020a). For instance, (Kim et al. 2019) propose an
attention-based graph neural network for stock movement
prediction. They show that all stocks are not equally corre-
lated, and often factoring a large number of pairwise stock
relations increases the noise in stock graphs, thereby reduc-
ing predictive performance. Similarly, (Feng et al. 2019b)
augment graph convolution networks (GCNs) with tempo-
ral convolutions and demonstrate the utility of augmenting
temporal stock price evolution methods with inter-stock re-
lations. Despite these advancements in graph-based stock
movement prediction, a simplification that existing models
make is that they assume stocks to be related in a pairwise
fashion. The decomposition of stock data that are inherently
better represented as hypergraphs in such a manner leads to
a loss of vital higher-order relation information.

Hypergraph Representation Learning Hypergraph
learning has made progress in problems where relations
among data points extend beyond pairwise interactions
owing to its ability to extract patterns from higher-order
relationships (Feng et al. 2019c). Recent work (Zhang,
Zou, and Ma 2019) shows that conventional methods that
decompose higher-order relations into a set of pairwise
relations do not perform well due to information loss, and
that recent methods like Deep Hyper Network Embedding
(Tu et al. 2018) are restricted to fixed-length hyperedges
leading to poor generalizability.
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Figure 3: An overall pipeline of the proposed STHAN-SR, stock hypergraph construction, learning, and network optimization.

3 Methodology
3.1 Problem Formulation
We formulate stock prediction as a learning to rank problem.
Let S = {s1, s2, . . . , sN} denote the set of N stocks, where
for each stock si ∈ S on trading day t, there is an associ-
ated closing price pt and a 1-day return ratio rti = pt−pt−1

pt−1 .
On any given trading day t, there exists an optimal ranking
Y t = {yt1 > yt2 · · · > ytN} of the stocks, such that there
exists a total order between the ranks yti > ytj for any two
stocks si, sj ∈ S, if rti > rtj . Such an ordering of stocks S on
a trading day t represents a ranking list, where stocks achiev-
ing higher ranking scores Y are expected to achieve a higher
investment revenue (profit) on day t. Formally, given stock
data for a lookback window of length T (i.e., [t− T, t− 1]),
we aim to learn a ranking function that outputs a score yti to
rank each stock si on day t in terms of expected profit.

We present an overview of STHAN-SR in Figure 3. In the
following subsections, we first show how the price features
are extracted, and explain the Hawkes attention mechanism
for learning the temporal evolution of stock features (Sec.
3.2). We then describe the stock hypergraph construction
followed by describing hypergraph convolutions and atten-
tion over the stock hypergraph (Sec. 3.3). Finally, we com-
bine the temporal and spatial hypergraph components and,
optimize the framework to capture temporal and spatial de-
pendencies for end-to-end stock ranking (Sec. 3.4).

3.2 Temporal Evolution of Stock Prices
Feature Extraction Historical stock prices have shown to
be a strong indicator of future stock trends (Jeanblanc, Yor,
and Chesney 2009), and widely used across financial litera-
ture (Li et al. 2020; Kim et al. 2019). We use historic price
information from previous T trading days as input features
to STHAN-SR. We calculate five temporal features for each
stock, 1-day return ratio, 5, 10, 20 and 30 day moving aver-
ages which represent the daily, weekly and monthly trends.
For each stock s, we then concatenate these temporal fea-
tures to form a stock price feature vector qτ on day τ . We
then use an LSTM to capture the temporal dependencies in

stock features qτ . We feed the daily price features qτ of each
stock to obtain the hidden states hτ ∈Rd for day τ as:

hτ = LSTM(qτ , hτ−1), t− T ≤ τ ≤ t− 1 (1)
where, d represents the dimension of the hidden states.
Temporal Attention Studies show that the stock trend
of each day has a different impact on future prices. To
this end, we employ a temporal attention mechanism ζ(·)
which learns to weigh critical days that impact future prices.
This mechanism aggregates temporal hidden states ht =
[ht−T , . . . , ht−1] ∈ Rd×T from different days into an over-
all representation using learnt attention weights βτ for each
day τ . We formulate this mechanism as:

ζ(ht)=
∑
τ

λτ , λτ =βτhτ , βτ =
exp (hTτWht)∑
τ

exp (hTτWht)
(2)

where, W is a learned linear transform. βτ represents the
learnt attention weights used to aggregate all temporal fea-
tures while assigning higher weights to important features.
Hawkes Attention The Hawkes process is a temporal point
counting-process that models a sequence of arrival of events
over time. Each event “excites” the process in the sense that
the chance of a subsequent arrival is increased for some time.
In stock markets, events such as release of earning call state-
ments, crises situations etc. influence the future prices and
such influence decays over time. It has been shown in fi-
nancial literature that Hawkes process can be used to model
historic stock prices and predict future trends (Bacry, Mas-
tromatteo, and Muzy 2015). We propose a temporal Hawkes
attention mechanism which enhances the temporal attention
mechanism ζ(·) by using a Hawkes process while aggregat-
ing day level latent representations λτ . This attention mech-
anism learns an excitation parameter ε corresponding to day
τ and a decay parameter γ to learn the decay rate of this in-
duced excitement. For each stock, we compute a temporal
feature zt as:

zt =
∑

τ=0,∆tτ≥0

(
λτ + ε max(λτ , 0)e−γ∆tτ

)
(3)

∆tτ is the time difference between current and past day τ .
We concatenate features zt of all stocks to form Z∈RN×d.
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3.3 Spatial Stock Hypergraph Feature Extraction
Stock Hypergraph Construction We model stock inter-
dependence via hypergraphs, where hyperedges represent
higher-order relations between stocks. We construct a hyper-
graph G = (V, E ,W) where each vertex v ∈ V represents a
stock s ∈ S, and each hyperedge e ∈ E represents a subset
of related stocks {s1, s2, . . . , sn} ∈ S. Each hyperedge e is
assigned a positive weight w(e) with all weights stored in a
diagonal matrix W ∈ R|E|×|E|. We let W = I indicating
equal weights for all hyperedges. We inject domain knowl-
edge by constructing hyperedges between stocks based on
two types of relations: industry and Wiki corporate relations.

Industry Hyperedges: Stocks belonging to same indus-
tries, collectively experience similar price trends based on
the industry’s performance (Livingston 1977). To leverage
this signal, we define relations between stocks as per the
GICS standard.2 Formally, we construct a hyperedge e ∈
Eind that connects stocks that belong to the same industry.

Wiki Corporate Hyperedges: We consider two types of
corporate relationships between stocks (companies) based
on Wikidata (Vrandečić and Krötzsch 2014). The first type
of corporate relation is a first-order relation, which is defined
as X R1−→ Y where R1 represents the entity-relation between
stocks X and Y defined in Wikidata. As shown in Figure 3,
we use these relationships to construct a hyperedge e ∈ E1
which consists a source stock and a set of target stocks re-
lated to the source stock through the same Wikidata rela-
tion. For instance, BlackRock and companies it owns (Net-
flix, eBay, Phillips 66, etc.) are represented by a hyperedge.

The second type of corporate relation is a second order
relationship, which is pairwise in nature. This relation is de-
fined as X R2−→ Z R3←− Y where Z denotes an entity connecting
the two stocks X and Y via entity-relations R2, and R3. We
construct a hyperedge e ∈ E2 between two stocks in a sec-
ond order relationship. For instance, Microsoft(X) and Berk-
shire Hathaway(Y) are related through Bill Gates(Z) since he
owns Microsoft(R2:“owned by”), and is a board member of
Berkshire Hathaway (R3: “is a board member of”).
We combine these relations as E = Eind∪E1∪E2 to construct
the hypergraph G, equivalently denoted by an incidence ma-
trix H ∈ R|V|×|E|, with entries h(v, e) defined as:

h(v, e) =

{
1, v ∈ e
0, v /∈ e (4)

The degree of each vertex v is obtained using a function
d(v), and stored in a diagonal matrix Dv ∈ R|V|×|V| as:

d(v) =
∑
e∈E

w(e)h(v, e) =
∑
e∈E

h(v, e) (5)

The degree of each hyperedge e is obtained using δ(e) =∑
v∈V h(v, e) stored in a diagonal matrix De ∈ R|E|×|E|.

Hypergraph Convolution To learn the interdependence
between the price movements of stocks, we use a hyper-
graph convolution (Figure 4) on the hypergraph G (Gilmer

2wikipedia.org/wiki/Global Industry Classification Standard

Figure 4: Hypergraph convolutions among stocks in a hyper-
edge (left) and attention among nodes & hyperedges (right).

et al. 2017). We first define a single hypergraph convo-
lution HConv(·), where the input to the lth hypergraph
convolution layer is a matrix of temporal stock features
X(l) ∈ R|V|×F (l)

where F (l) is the dimension of the tem-
poral features. The hypergraph convolution updates the tem-
poral features X(l) to new features X(l+1) ∈ R|V|×F (l+1)

using the neighboring stock features with their structural re-
lationships represented in the hypergraph G where, F (l+1)

is the dimension of transformed node features. Following
(Feng et al. 2019c), we define the hypergraph Laplacian as
∆ = I−D

−1/2
v HWD−1

e HTD
−1/2
v resulting in the hyper-

graph convolution update rule as:

X(l+1) = HConv
(
X(l),H,P

)
= ELU(D

− 1
2

v HWDe
−1HTD

− 1
2

v X(l)P)

(6)

P ∈ RF (l)×F (l+1)

is a learnable matrix, ELU is exponential
linear unit activation. Recall that we set W = I.

Hypergraph Attention To capture the varying degree of
influence each stock relation has on the temporal price evo-
lution of each stock, we employ a hypergraph attention
mechanism on the incidence matrix H (Bai, Zhang, and Torr
2019). This mechanism learns to adaptively weight each hy-
peredge associated with a stock based on its temporal fea-
tures, adding a learning mechanism over the stock relations,
thereby bridging the temporal Hawkes attention and spatial
hypergraph convolutions. Formally, for each node vi ∈ V
and its associated hyperedge ej ∈ E , we compute an at-
tention coefficient Hat

ij using the stock’s temporal feature xi
and the aggregated hyperedge features xj , quantifying how
important the corresponding relation ej is to the stock vi.
Formally, we define the attention coefficient as the softmax
of a single-layer feed forward network −→a :

Hat
ij =

exp(LeakyReLU(−→a T [Pxi ⊕ Pxj ]))∑
k∈Ni exp(LeakyReLU(−→a T [Pxi ⊕ Pxk]))

(7)

where, ⊕ is concatenation and P represents a learnt linear
transform. Ni is the neighborhood set of xi which can be
accessed using the constructed hypergraph G. The attention-
based learnt hypergraph incidence matrix Hat shown in Fig-
ure 4, is then used in the above hypergraph convolution
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NASDAQ NYSE TSE

Train(Tr) Period 01/13-12/15 01/13-12/15 11/15-08/18
Val(V) Period 01/16-12/16 01/16-12/16 08/18-07/19
Test(Te) Period 01/17-12/17 01/17-12/17 07/19-08/20
#Days(Tr:V:Te) 756:252:237 756:252:237 693:231:235
#Stocks(Nodes) 1, 026 1, 737 95
#Hyperedges 862 1, 595 84

Table 1: Dataset statistics detailing chronological date splits
of the three markets and their corresponding hypergraphs.

shown in Equation 6 by replacing H with Hat to learn inter-
mediate representations of the stocks (nodes) layer-by-layer.

We use multi-headed architecture to stabilise training
(Vaswani et al. 2017). Formally, K independent executors
apply the hypergraph convolution using the enriched inci-
dence matrix Hat whose outputs are concatenated to yield:

X(l+1) =
K⊕
k=1

ELU
(
D
− 1

2
v Hat

kWD−1
e HatT

k D
− 1

2
v X(l)Pk

)
(8)

where, Hat
k and Pk are the enriched incidence matrix and the

weight matrix of the kth executor, respectively.

3.4 Learning to Rank and Network Optimization
We employ two hypergraph convolutions (HConv(·)) with
an ELU activation between the first and second layer. We
feed the temporal stock features Z to STHAN-SR’s first
layer X(0) ∈ R|V|×d. STHAN-SR’s final layer X(2) ∈
R|V|×1 outputs the predicted stock ranking r̂t+1.

r̂t+1 =HConv

(
K⊕
k=1

HConv(Z,Hat,P1),Hat,P2

)
(9)

P1 and P2 are parameter matrices of first and second layers.
We optimize STHAN-SR using a combination of a point-

wise regression and pairwise ranking-aware loss to mini-
mize the difference between the predicted and actual re-
turn ratios while maintaining the relative order of top ranked
stocks with higher expected return for investment as:

L= ‖̂rt+1−rt+1‖2+φ
V|∑
i=0

|V|∑
j=0

max
(
0,−

(̂
r
t+1
i −r̂t+1

j

)(
r
t+1
i −rt+1

j

))
(10)

where, r̂t+1 and rt+1 are the predicted and actual ranking
scores, respectively, and φ is a weighting parameter.

4 Experimental Setup
4.1 Datasets
For a comprehensive evaluation of STHAN-SR, we evaluate
it on three real-world datasets from US and Japanese stock
markets spanning over six years. We summarize statistics
about the datasets in Table 1, and elaborate on them next:
NASDAQ (Feng et al. 2019b) is a fairly volatile US ex-
change. We evaluate STHAN-SR on 1,026 equity stocks
from the NASDAQ Global and Capital markets that span the
S&P 500 and NASDAQ Composite indexes.

NYSE (Feng et al. 2019b) is the world’s largest stock ex-
change by market capitalization and is stable as compared
to NASDAQ.
Tokyo Stock Exchange (TSE) (Li et al. 2020) is a smaller
market contrasting with US markets. We evaluate STHAN-
SR on the 95 largest stocks by market capitalization in
Japan, in the TOPIX 100 index.
We collect prices using Google Finance3 and construct hy-
pergraphs by mining relations from Wikidata.4

4.2 Training Setup
We perform all experiments on a Tesla P100 GPU. We
use grid search to find optimal hyperparameters, lookback
length T ∈ range[8, 24], weighting factor φ ∈ range[1, 10]
and learning rate ∈ (1e− 4, 5e− 3) for all models based
on validation Normalized Discounted Cumulative Gain
(NDCG@5). We use Xavier initialization for all weights and
set LSTM output space to 32. We set number of attention
heads K = 4 and output space of HConv(·) to 32. We use
Adam optimizer and train STHAN-SR for 500 epochs.

4.3 Evaluation Metrics
Returns We compare the Sharpe ratio and cumulative in-
vestment return ratio (IRR) to assess profit generation abil-
ity of all methods. Following (Feng et al. 2019b), we adopt a
daily buy-hold-sell trading strategy that is, when the market
closes on trading day t the trader uses the method to get a
ranked list of the predicted return ratio for each stock. The
trader then buys the top k stocks and then sells the bought
stocks on the market close of trading day t + 1. The IRR is
thus, the cumulative return on an investment over time, in-
dependent of the length of the duration. The IRR on day t is

defined as, IRRt =
∑
i∈St−1

pti−p
t−1
i

pt−1
i

where, St−1 denotes

the set of stocks in the portfolio on day t − 1 and pti, p
t−1
i

is the closing price of the stock i on day t and t− 1 respec-
tively. We also calculate the Sharpe ratio (SR), which is a
measure of the return of a portfolio compared to its risk. We
calculate the Sharpe ratio by computing the earned return
Ra in excess of a risk-free return5 Rf as:

Sharpe Ratioa =
E[Ra −Rf ]

std[Ra −Rf ]
(11)

Ranking We evaluate STHAN-SR’s ranking ability using
NDCG@k. NDCG@k sums the true scores ranked in the or-
der induced by the predicted scores, after applying logarith-
mic discount. For both returns and NDCG, we report results
for top k = 5 stocks.

5 Results and Analysis
5.1 Profitability Comparison with Baselines
We compare STHAN-SR with several baselines in terms of
profitability, as shown in Table 2. We observe that STHAN-
SR consistently generates significantly (p < 0.01) higher

3Google Finance: https://www.google.com/finance
4Wikidata: https://www.wikidata.org/
5T-Bill rates: https://home.treasury.gov/
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NASDAQ NYSE TSEModel Description SR↑ IRR↑ SR↑ IRR↑ SR↑ IRR↑
ARIMA (Wang and Leu 1996) Non-stationary time series modeling of prices 0.55 0.10 0.33 0.10 0.47 0.13
A-LSTM (Feng et al. 2019a) Adversarial training to enhance stock prediction 0.97 0.23 0.81 0.14 1.10 0.43
HGCluster (Luo et al. 2014) Graph coarsening on price correlation hypergraph 0.06 0.10 0.10 0.11 0.20 0.10
GCN (Li et al. 2020) LSTM+GCN for modelling stock relation graph 0.75 0.13 0.70 0.10 0.90 0.28

CLF

HATS (Kim et al. 2019) Hierarchical graph attention on stock multigraphs 0.80 0.15 0.73 0.12 0.96 0.31
SFM (Zhang et al. 2017) Frequency-aware LSTM on price data 0.16 0.09 0.19 0.11 0.08 0.07REG LSTM (Bao et al. 2017) Vanilla LSTM on temporal price data 0.48 0.13 0.13 0.09 0.63 0.20
DQN (Carta et al. 2020) Ensemble of deep Q-learning agents on price data 0.93 0.20 0.72 0.12 1.08 0.31

RL iRDPG (Liu et al. 2020) Imitative RDPG algorithm on temporal price data 1.32 0.28 0.85 0.18 1 .10 † 0 .55 †

LSTM (Bao et al. 2017) Vanilla LSTM on temporal price data for ranking 0.95 0.22 0.79 0.12 0.73 0.21
GCN (Kipf et al. 2017) LSTM+GCN for modelling stock relation graph 0.46 0.13 0.72 0.16 0.81 0.27
RSR-E (Feng et al. 2019b) Temporal GCN using similarity as relation weight 1.12 0.26 0.88 0.20 1.07 0.50
RSR-I (Feng et al. 2019b) Temporal GCN with neural net for relation weight 1 .34 ∗ 0 .39 ∗ 0 .95 ∗ 0 .21 ∗ 1.08 0.53

RAN

STHAN-SR (Ours) Hawkes Attention, HG Attention, HG Convolution 1.42∗† 0.44∗† 1.12∗† 0.33∗† 1.19∗† 0.62∗†

Table 2: Profitability comparison with classification (CLF), regression (REG), reinforcement learning (RL) and ranking (RAN)
methods (mean of 5 individual runs). Bold & italics show best & second best (SOTA) results, respectively. ∗ & † imply the
improvement over iRDPG & RSR-I, respectively, is statistically significant (p<0.01), under Wilcoxon’s signed rank test.

Ablation Study NASDAQ NYSE TSE
Model Component SR↑ IRR↑ NDCG↑ SR↑ IRR↑ NDCG↑ SR↑ IRR↑ NDCG↑
LSTM 0.95 0.22 0.68 0.79 0.12 0.65 0.73 0.21 0.65
Temporal Attention + LSTM 0.96∗ 0.29∗ 0.67 0.80∗ 0.13∗ 0.67∗ 0.80∗ 0.23∗ 0.70∗

Hawkes Attention + LSTM 1.06∗ 0.31∗ 0.69∗ 0.96∗ 0.17∗ 0.68∗ 0.86∗ 0.27∗ 0.72∗

Hypergraph Conv + LSTM 0.93 0.27∗ 0.65 0.78 0.15∗ 0.67∗ 0.82∗ 0.28∗ 0.71∗

Hypergraph Conv + Hawkes Attn 1.00∗ 0.35∗ 0.71∗ 0.81∗ 0.20∗ 0.70∗† 0.97∗ 0.34∗ 0.73∗

Hypergraph Attn + LSTM 1 .37 ∗† 0 .42 ∗† 0 .74 ∗† 0 .98 ∗† 0 .24 ∗† 0 .72 ∗† 1 .11 ∗† 0 .56 ∗† 0 .76 ∗†

STHAN-SR 1.42∗† 0.44∗† 0.80∗† 1.12∗† 0.33∗† 0.88∗† 1.19∗† 0.62∗† 0.84∗†

Table 3: Ablation study over STHAN-SR’s components (mean of 5 independent runs). * and † indicate improvement over the
LSTM and state-of-the-art RSR-I, respectively, is statistically significant (p < 0.01), under Wilcoxon’s signed rank test.

risk-adjusted returns than all baselines across all datasets.
Generally, ranking and RL methods that are inherently opti-
mized for higher returns are more profitable than classifica-
tion and regression methods, which do not necessarily select
the most profitable stocks to trade, validating our premise of
formulating stock prediction as a learning to rank problem.

Next, we observe that amongst the best performing rank-
ing and RL models, those that model stock interdepen-
dence (RSR-I, STHAN-SR) outperform price-only methods
(LSTM, DQN, iRDPG), as they capture the spatial corre-
lations amongst movements of related stocks. We also ob-
serve that our proposed STHAN-SR significantly (p < 0.01)
outperforms state-of-the-art graph-based methods (RSR-I,
RSR-E). We postulate this improvement to STHAN-SR’s
design that captures higher-order stock relations as a hy-
pergraph instead of constraining them as pairwise edges in
ordinary graphs (GCN, RSR-I, and RSR-E). These obser-
vations collectively demonstrate STHAN-SR’s utility as a
spatiotemporal attention-based hypergraph learning to rank
stock selection model. We now further probe into each of
STHAN-SR’s components through an ablation study to an-
alyze the sources of these improvements over the baselines.

5.2 Model Component Ablation Study
In Table 3, we observe that Hawkes attention significantly
(p < 0.01) improves temporal attention, validating our de-
sign choice of using Hawkes process to model stock prices
as temporal point processes. On the spatial front, we note
that hypergraph convolutions over inter stock relations do
not lead to significant improvements, likely because from
the vast number of diverse relations between stocks, only
a few are meaningful enough to significantly influence the
prices of related stocks. Intuitively, complementing hyper-
graph convolutions with attention leads to large improve-
ments, as the spatial hypergraph attention mechanism learns
to weigh more important relations selectively, such as one
where a set of stocks have the same parent company, as op-
posed to stocks related by their country of origin. Finally, we
observe that both spatial hypergraph and temporal Hawkes
components complement each other by capturing spatiotem-
poral correlations in stock markets. Next, we investigate
both the spatial and temporal components to further contex-
tualize performance improvements due to each component.

5.3 On the Effectiveness of Hypergraphs
Effect of injecting domain knowledge via stock relations
We first probe the effectiveness of domain knowledge-based

502



2 15 30 60 120 240 500

0.7

0.8

0.9

Removed-Hyperedge Degree

N
D

C
G

@
5

NYSE

NASDAQ

(a) Successive removal of hyper-
edges from the hypergraph

2 15 30 60 120 240 500

0.7

0.8

0.9

Decomposed-Hyperedge Degree

NYSE

NASDAQ

(b) Decomposition of hyper-
edges into pair-wise relations

Figure 5: Influence of domain knowledge via hypergraphs.

hyperedges, by successively removing them in an increasing
order of their degree and analyzing STHAN-SR’s ranking
performance in terms of NDCG@5 in Figure 5a. We ob-
serve that NDCG@5 decreases as we remove hyperedges,
and performs the worst after all hyperedges are removed, es-
sentially degenerating STHAN-SR to a Hawkes Attention +
LSTM model that does not account for inter-stock relations.

Hypergraph v.s. Graph for representing stock relations
We now contrast the performance between representing in-
ter stock relations as hyperedges as opposed to ordinary pair-
wise edges. We decompose each hyperedge of degree n into(
n
2

)
pairwise edges, in an increasing order of hyperedge de-

gree and analyze the NDCG@5 variation as we decompose
hyperedges in Figure 5b. We observe a degradation in rank-
ing ability as we decompose hyperedges into pairwise edges,
with the minimum NDCG@5 being attained when all hyper-
edges are decomposed, essentially when STHAN-SR degen-
erates into a Hawkes Attention + Graph Attention Network.

Through these experiments, we note that modeling in-
ter stock dependence through domain knowledge as (hy-
per)edges drastically improves stock selection, and more im-
portantly, that hypergraphs effectively capture higher order
relations between stocks, as opposed to simple graphs.

5.4 Visualizing Hawkes Attention

Next, we qualitatively analyze STHAN-SR’s temporal com-
ponent by comparing Hawkes (HA) and temporal atten-
tion (TA) mechanisms over a 16-day lookback for the stock
USAP from NASDAQ’s test set in March 2017. We visual-
ize day-level attention throughout the lookback window, and
analyze the corresponding predicted Return Ratios (RR) for
the 17th day in Figure 6. For comparison, we also show ac-
tual and previously predicted RRs across all days. STHAN-
SR using TA predicts the 17th day RR with a relative error of
5.57% from the actual value, whereas using HA, predicts a
return closer to the actual value (0.69%). Despite the varying
trend throughout the lookback window, HA accurately cap-
tures the uptrend towards the end of the window, whereas TA
learns distributed scores, capturing an overall downtrend.

Figure 6: Day-level attention visualization and returns using
STHAN-SR with Hawkes and temporal attention methods.
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5.5 Parameter Analysis: Probing Sensitivity

Lookback window length T We analyze STHAN-SR’s
ranking performance with varying historical lookback
lengths T in Figure 7 and observe that STHAN-SR using
Hawkes attention outperforms temporal attention, and per-
forms better over longer lookbacks.

Number of selected top stocks k We analyze STHAN-
SR’s profitability (SR) variation with the number of selected
top stocks k from the ranked stocks in Figure 7. We find that
STHAN-SR performs well and is consistent on varying k.

6 Conclusion and Future Work
We reformulate stock prediction as a learning to rank prob-
lem and model stocks via hypergraphs based on domain
knowledge. We present STHAN-SR, a neural hypergraph
model for stock prediction. We propose temporal Hawkes
attention and complement it with spatial hypergraph convo-
lutions and attention to capture the spatiotemporal depen-
dencies in stock markets. STHAN-SR significantly outper-
forms state-of-the-art methods in terms of profit in three
global markets over six years. Through ablative and qualita-
tive experiments, we probe STHAN-SR’s effectiveness and
set forth its practical applicability for algorithmic trading.
Our proposed model can be generalized for spatiotemporal
learning over hypergraphs across problems in varying do-
mains, such as traffic prediction and session-based recom-
mender systems. In future, we aim to explore time-evolving
hypergraphs to capture dynamic market correlations and in-
corporate additional data sources such as online news and
social media.
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