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ABSTRACT
A large portion of today’s big data can be represented as networks.

However, not all networks are the same, and in fact, for many

that have additional complexities to their structure, traditional

general network analysis methods are no longer applicable. For

example, signed networks contain both positive and negative links,

and thus dedicated theories and algorithms have been developed.

However, previous work mainly focuses on the unipartite setting

where signed links connect any pair of nodes. Signed bipartite

networks on the one hand, are commonly found, but have primar-

ily been overlooked. Their complexities of having two node types

where signed links can only form across the two sets introduce

challenges that prevent most existing literature on unipartite signed

and unsigned bipartite networks from being applied. On the other

hand, balance theory, a key signed social theory, has been generally

defined for cycles of any length and is being used in the form of

triangles for numerous unipartite signed network tasks. However,

in bipartite networks there are no triangles and furthermore there

exist two types of nodes. Therefore, in this work, we conduct the

first comprehensive analysis and validation of balance theory using

the smallest cycle in signed bipartite networks - signed butterflies

(i.e., cycles of length 4 containing the two node types). Then, to in-

vestigate the applicability of balance theory aiding signed bipartite

network tasks, we develop multiple sign prediction methods that

utilize balance theory in the form of signed butterflies. Our sign pre-

diction experiment on three real-world signed bipartite networks

demonstrates the effectiveness of using these signed butterflies for

not only sign prediction, but paves the way for improvements in

other signed bipartite network analysis tasks.
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1 INTRODUCTION
Much of the data being produced today can be represented in net-

works. However, many networks exist that fall outside the range

of being able to apply the general network analysis methods to

them due to their added complexities in structure. One such type

that has become increasingly ubiquitous, especially with the grow-

ing popularity of online social media and e-commerce, are signed

networks, which not only have positive links, but also allow for

the construction of negative links. For example, negative links can

be used to represent distrust, a mechanism to warn others of a

potential “scammer” in online e-commerce, or in social networks

they can represent the connections with our foes (or blocked users).

Previous work and theories have primarily focused on unipartite

signed networks, which are networks that have a single node type

and signed links are able to connect any two nodes in the network.

However, a common form of signed networks that have primarily

been overlooked – signed bipartite networks. These networks have

two sets of nodes and links are only able to be formed between

nodes of different types. Actually, signed bipartite networks appear

across multiple domains. For example, in e-commerce, a signed

bipartite network can be constructed between buyers and sellers

in multi-vendor marketplaces when the users are asked to rate the

other after each transaction and helpfulness ratings from users to

reviews can be naturally denoted as a signed bipartite network.

Another important application of signed bipartite networks is from

the political science domain, more specifically, we observe that

indeed the United States Congress is inherently a signed bipartite

network formed from the representatives and the bills they have

voted on (where the "Yea" and "Nay" votes can be represented as

positive and negative links, respectively) [11, 21]. In addition, many

online systems, such as Netflix and YouTube, adopt “thumbs-up"

or “thumbs-down" rating systems that can also be formulated as

signed bipartite networks.

Although there have been works focused on unsigned bipartite

networks, these methods are lacking the capability to handle the

further complexities of negative links. Similarly, methods developed

for unipartite signed networks might not be applicable when having

https://doi.org/10.1145/3357384.3358009
https://doi.org/10.1145/3357384.3358009
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the two node types or limiting the possible connections in the

network. For example, a fundamental theory that explains the social

phenomena of the link structure in signed network analysis is

balance theory [6, 17]. It suggests that a cycle in signed networks

with an even number of negative links is balanced, which is typically

stated as “a friend of my friend is my friend” while an “enemy of

my friend is my enemy”. In unipartite signed networks balance

theory has been extensively applied on signed triangles (i.e., the

smallest undirected cycle) across various real-world networks to

obtain better performance across modeling [9, 33, 42], measuring [5,

37, 41, 45], and mining applications [4, 7, 20, 23] . However, in

signed bipartite networks it is fundamentally impossible to have any

triangles while having the two different types of nodes. Therefore

it is important to understand balance theory in signed bipartite

networks and its possibility to enhance applications, due to the

prevalence of signed bipartite networks. Thus, dedicated efforts

are desired for signed bipartite networks in additional to unipartite

signed networks and unsigned bipartite networks.

In this paper, we perform an initial investigation of balance

theory in undirected signed bipartite networks. As aforementioned,

balance theory has been utilized to advance numerous tasks in

unipartite signed networks and sign prediction is the one being

benefited most. Hence, we then investigate how to utilize balance

theory to boost sign prediction in signed bipartite networks. This

paves the way for using balance theory for other network analysis

tasks in signed bipartite networks. The main contributions of the

paper are summarized as the following:

• We conduct the first comprehensive analysis and validation

of balance theory for signed bipartite networks;

• We leverage balance theory for the construction of multiple

sign prediction methods.

• We perform experiments on three real-world signed bipartite

network datasets to understand balance theory and sign

prediction in signed bipartite networks.

The remainder of this paper is organized as follows. Our signed

bipartite datasets are introduced along with our analysis and inves-

tigation of extending balance theory to signed bipartite networks

in the form of signed butterflies in Section 2. Then, in Section 3

we present numerous sign prediction methods for signed bipartite

networks based on the signed butterflies. Next we perform experi-

ments for predicting the sign of missing links using our proposed

methods in Section 4. Related work is presented in Section 5 and

briefly discussed. Finally, conclusions and future work are given in

Section 6.

2 BALANCE THEORY IN UNDIRECTED
SIGNED BIPARTITE NETWORKS

In this section, we will introduce the datasets we have collected

for this study. Thereafter we discuss balance theory from a general

signed network perspective, then we validate its applicability in

signed bipartite networks, and perform a preliminary analysis on

our datasets; but first, we introduce the definitions and notations.

Consider an undirected signed bipartite network, G = (UB ,US ,

E+, E−), whereUB = {b1,b2, . . . ,bnB } andUS = {s1, s2, . . . , snS }
represent two mutually exclusive sets of homogeneous nodes with

Table 1: Notations.

Notations Descriptions

B Undirected signed bidjacency matrix

PB Adjacency matrix for theUB -projection network

PS Adjacency matrix for theUS -projection network

A Adjacency matrix constructed from B, PB , and PS
U Low-dimensional representation of nodes inUB
V Low-dimensional representation of nodes inUS

Table 2: Statistics on Signed Bipartite Networks.

Bonanza U.S. Senate U.S. House

nB = |UB | 7,919 1,056 1,281

nS = |US | 1,973 145 515

|E | = |E+ | + |E− | 36,543 27,083 114,378

% Links Positive 97.98% 55.31% 53.96%

% Links Negative 2.02% 44.69% 46.04%

Density of B 2.339 × 10
−3

0.1769 0.1734

nB and nS representing the number of nodes for each set, respec-

tively. E+ ⊂ UB × US and E− ⊂ UB × US represent the sets of

positive and negative edges, respectively, between the two sets of

nodes UB and US . We let E = E+ ∪ E−
be the set of all edges

where E+ ∩ E− = ∅, in other words, two nodes cannot have both a

positive and negative edge between them. We use B ∈ RnB×nS to

represent the undirected signed bipartite biadjacency matrix of G,

where Bi j = 1,−1, or 0, when there exists a positive, negative, or no

link between bi and sj . We further summarize the major notations

used throughout this work in Table 1.

2.1 Signed Bipartite Networks
We have collected three signed bipartite networks for this study.

The first signed bipartite network is from the e-commerce website

Bonanza
1
. Bonanza is similar to eBay

2
and Amazon Marketplace

3

in that users create an account for which they can buy or sell

various goods. After a buyer purchases a product from a seller,

both are able to provide a rating about the other along with a short

comment. At the time of collection, Bonanza was using a rating

scale of “Positive”, “Neutral”, and “Negative” to rate another user

after a transaction. For representing the buyers and sellers, we use

UB andUS , respectively.

The next two datasets are representing the role call votes com-

bined from the 1st to 10th United States Congress. More specifically,

we collected two separate datasets
4
; one for the U.S. Senate and the

other for the U.S. House of Representatives (which we will refer

to as U.S. House). In each of these datasets we represent the bills

that were voted by the setUB and the senators or representatives

byUS . If a congressperson voted “Yea” or “Nay” for the bill, then

we represent these as positive or negative links between them,

respectively, and leave the connection missing otherwise.

Note that for simplicity throughout the rest of this work we will

refer to the nodes inUB as “buyers” and those inUS as “sellers”. In

Table 2 we report some basic statistics of our three collected datasets.

1
http://www.bonanza.com

2
http://www.ebay.com

3
http://www.amazon.com

4
https://www.govtrack.us/data/
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Table 3: Signed Butterfly Statistics on Signed Bipartite Networks.

Signed Butterfly

Isomorphism Classes

Bonanza U.S. Senate
U.S. House of

Representatives
Count % E% s Count % E% s Count % E% s

(A) (+, +, +, +) 2554388 0.986 0.922 386 13404168 0.262 0.094 4142 227660420 0.244 0.085 17459

(B) (+, −, −, +) 3830 0.001 7.8e-04 40 5595440 0.110 0.122 -277 103731010 0.111 0.123 -1137

(C) (+, +, −, −) 726 2.8e-04 7.8e-04 -29 9404006 0.184 0.122 1349 173875858 0.186 0.123 5843

(D) (+, −, +, −) 456 1.7e-04 7.8e-04 -35 5537080 0.108 0.122 -302 101409932 0.109 0.123 -1368

(E) (−, −, −, −) 20 7.7e-06 1.7e-07 30 6815324 0.133 0.040 3414 137478104 0.147 0.045 15104

Balanced 2559420 0.988 0.924 40756018 0.797 0.500 744155324 0.797 0.500

(F ) (+, +, +, −) 30685 0.012 0.076 -390 6225745 0.122 0.302 -2811 109763190 0.118 0.289 -11565

(G) (+, −, −, −) 100 3.9e-05 3.2e-05 2 4118075 0.081 0.197 -2099 79053742 0.085 0.210 -9430

Unbalanced 30785 0.012 0.076 10343820 0.203 0.500 188816932 0.203 0.500

We note that in the Bonanza dataset there is a significant imbalance

between the number of positive and negative links as compared

to the two U.S. Congress datasets. Although these datasets are

representing vastly different real-world social structures, we next

investigate balance theory [6, 17] to the signed bipartite network

setting.

2.2 Signed Butterflies in Bipartite Networks
In signed networks one of the most fundamentally studied social

theories is balance theory [6, 17], which discusses the settings

in signed networks that are socially “balanced” (i.e., stable), and

those that are more likely to change (to be balanced) due to the

social tensions involved inmaintaining “unbalanced” and seemingly

unnatural connections. In recent signed network analysis works

balance theory is usually investigated and then applied towards

many tasks[28, 39, 44], but almost always in the form of triangles

(or cycles of length 3) in a unipartite signed network. As seen

in Figure 1, there are four possible configurations between the

three nodes. We can further observe in Figure 1 that triangles (a)

and (b) are balanced (due to having an even number of negative

links), while (c) and (d) are unbalanced. Nevertheless, as previously

mentioned, since there are no triangles in signed bipartite networks

and they have two different node types, it is unknown whether

balance theory is still applicable towards a bipartite setting.

In this subsection, we will therefore introduce how we plan to

extend the usage of balance theory to the smallest signed cycles

(i.e., butterflies) in undirected signed bipartite networks. Next we

investigate and present our initial analysis of these signed butterflies

in three real-world signed bipartite networks.

2.2.1 Signed Butterfly Isomorphism Classes. In unsigned bipartite

networks, one commonly investigated structure is that of a “butter-

fly” [1, 36], which is a cycle of length 4. More formally, a butterfly

is the simplest cohesive higher-order structure and also a complete

biclique. Thus, this provides the most natural structure to investi-

gate as a possible extension for balance theory in signed bipartite

networks.

Just as there are different types of signed triangles, there are

different types of signed butterflies. In Figure 2 we present the 7

non-isomorphic undirected signed butterflies. Note that there are

five that adhere to balance theory while only two are categorized

Figure 1: Undirected Signed Triangle Isomorphism Classes.

Figure 2: Undirected Signed Butterfly Isomorphism Classes.

as unbalanced. We use the notation (∗, ∗, ∗, ∗) to denote a signed

butterfly isomorphism class that represents the links between the

buyers and sellers (bi , sj ,bk , sl ) (in that order with the last sign

connecting sl and bi ). The simplest of types are (+,+,+,+) and

(−,−,−,−), which denote the classes having all positive or all neg-

ative links, respectively, and both are balanced due to having an

even number of negative links (and can be seen in Figures 2(A)

and 2(E), respectively). We can interpret the (+,+,+,+) class as the

situations where two buyers have bought from the same two sellers

and the sentiment amongst them across the four purchases was

positive. Next, we have (+,+,+,−) and (+,−,−,−), which are the

two unbalanced classes of signed butterflies (since they have an

odd number of negative links). In Figure 2(F) we have the signed

butterfly isomorphism class that encompasses all the signed but-

terflies with a single negative link. We can observe that no matter

where this single negative link is placed, we always have one buyer

with two positive links, one buyer with a positive and negative

link, and similar structure for the two sellers. The isomorphism

class (+,−,−,−) can be seen as the complement (if defined as swap-

ping link signs in a signed network) of the class (+,+,+,−) and

defined in a similar way, but with swapping the positive and nega-

tive links in the definition. This leaves the signed butterflies having
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two positive and two negative links, of which we have three iso-

morphism classes. In Figure 2(D) we see the class (+,−,+,−) is

used to represent signed butterflies where all buyers and sellers

have one positive and one negative link in their cycle. When one

of the buyers has two positive links, while the other buyer has two

positive links, we observe in Figure 2(B) that both sellers have a sin-

gle positive and single negative link, and define the isomorphism

class of (+,−,−,+). Finally, the last type of signed butterfly has

both buyers connected positively to one seller, and negatively to

the other, which we represent as the class (+,+,−,−) shown in

Figure 2(C).

2.2.2 Signed Butterfly Analysis. In Table 3we report our analysis af-
ter counting the number of signed butterflies for each isomorphism

class as shown in Figure 2. We further calculated the percentage

each isomorphism class takes up of the total signed butterfly count

in each dataset (given in column “%”). Next, we analyzed the signif-

icance of these signed butterflies being found in signed bipartite

networks and wanted to test whether they are overrepresented or

underrepresented. Remember, balance theory would suggest that

balanced isomorphism classes (A) through (E) should appear fre-

quently while (F) and (G) (being unbalanced) should appear less

frequently. To quantify this, extending the approach taken in [28],

we calculate “E%” as the expected percentage of total signed butter-
flies to fall into the given isomorphism class when randomly reas-

signing the positive and negative signs to the signed bipartite net-

work. In other words, for example, “E%” for the isomorphism class

(+,−,−,−) is calculated by

(
4

1

) (
(|E+ |/|E |) × (|E− |/|E |)3

)
, since

there are 4 permutations of having a single positive link in a signed

butterfly in class (+,−,−,−) and the probability of each link appear-

ing in a signed network with randomly assigned link signs would

be the independent probabilities of having a single positive link

(i.e., |E+ |/|E |) and three negative links (i.e., |E− |/|E |). Finally, the

value “s” is used to denote the number of standard deviations the

actual count differs from our calculated expected number (based on

“E%”) for each signed butterfly type and just as in [28], a positive

(or negative) “s” value signifies appearing significantly more (or

less) than expected.

We first observe that the large majority of signed butterflies in

our three signed bipartite networks are indeed balanced. Further-

more, they are significantly more balanced than expected based on

the link sign ratio in the given network (i.e., comparing columns

“%” and E%). The second observation is that all unbalanced signed

butterflies across the three datasets are significantly underrepre-

sented, except for the (+,−,−,−) butterflies in Bonanza, where it

shows a minimal over representation. Similarly, across all datasets

the (+,+,+,+) and (−,−,−,−) signed butterflies are significantly

overrepresented, further strengthening the applicability of balance

theory in signed bipartite networks. However, the isomorphism

classes involving two positive and two negative links appear to

not always be found overrepresented. For example, the class where

all buyers and sellers have one positive and one negative link, i.e.,

(+,−,+,−), is less commonly found than expected across all three

datasets.

In summary, our findings suggest that: 1) we can use signed

butterflies to extend balance theory for signed bipartite networks;

and 2) signed bipartite networks adhere to balance theory when

defined in terms of signed butterflies, thus making them applicable

to advance numerous tasks in signed bipartite networks.

2.3 Signed Caterpillars in Bipartite Networks
In this subsection, we discuss the notion of “signed caterpillars”,

which we denote as paths of length 3 that are missing just one link

to becoming a signed butterfly.

A signed caterpillar can take on one of eight different forms,

since it is composed of three links being ether positive or negative.

Note that all caterpillar types have the potential to be transformed

into a signed butterfly (i.e., closed into a cycle of length 4) that

is either balanced or unbalanced. If a signed caterpillar contains

an even number of negative links, we refer this as a “balanced

path” and balance theory would suggest a positive (or negative)

link transforming it into a balanced (or unbalanced) signed butterfly.

Similarly, we define an a signed caterpillar as an “unbalanced path”

when having an odd number of negative links and balance theory

would suggest a negative (or positive) link to close into a balanced

(or unbalanced) signed butterfly.

3 SIGN PREDICTION FOR UNDIRECTED
SIGNED BIPARTITE NETWORKS

With the aforementioned definitions and notations, we formally

define the problem of sign prediction in undirected signed bipartite

networks as the following:

Given an undirected signed bipartite networkG = (UB ,US , E
+, E−)

represented as a biadjacency matrix B ∈ R |UB |× |US | , we seek to pre-
dict the signs of no link pairs (bi , sj ) ∈ {UB ×US }\{E

+ ∪ E−}.
Sign prediction in signed networks has been previously stud-

ied [7, 19, 27, 35, 49]. However, in the signed bipartite setting, many

of these methods are no longer applicable, since there are no trian-

gles. In Section 2.2, we validated that the large majority of signed

butterflies in signed bipartite networks are balanced. Methods for

predicting link signs in unipartite signed networks can be catego-

rized into three main groups: 1) supervised methods; 2) low-rank

approximation methods; and 3) propagation based methods. There-

fore we develop a representative sign prediction method specific

to signed bipartite networks from each group. More specifically,

we propose: 1) a supervised classification method that uses signed

caterpillars/butterflies; 2) extend a low-rank modeling method to

ensure the predicted signs favor creating more balanced signed

butterflies; and 3) a random walk based approach that integrates

one-mode projection networks for UB and US constructed using

balance theory.

3.1 Signed Caterpillars Based Classifier
One common approach towards predicting links or link signs in

both signed and unsigned networks is to frame the task in terms of

a supervised classification problem [2, 7, 27, 32]. Here we extend the

idea to the signed bipartite setting by formulating the problem of

predicting the sign between a buyer bi and a seller sj by extracting

features from either the individuals (i.e., their positive and negative

degrees) or local neighborhood features based on balance theory

(i.e., signed caterpillars).

To train our model we construct a training dataset consisting of

known signed links (between a buyer and seller). Then, after having
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a trained model, we can extrapolate what we learned from the train-

ing data to predict a positive or negative sign for an unknown buyer

and seller pair. More specifically, we use a logistic regression model

following the prediction on directed signed unipartite networks

work in [27].

Feature Extraction. The two different sets of features we eval-

uate are either based on the two nodes degree distributions or

information about how many signed caterpillars they are the two

endpoints of (i.e., they would be the buyer and seller connection

transforming the signed caterpillar to a balanced or unbalanced

signed butterfly). Thus, the feature vector xdi j for the pair (bi , sj )
includes the the positive and negative degrees for both bi and sj .
In comparison, xsci j contains the counts for each of the 8 possible

signed caterpillars that have bi and si as the endpoints. The expec-
tation is that the features xsci j will be more informative than those of

xdi j because they would provide a vast amount of informaiton as to

whether their link sign is likely to be positive or negative according

to balance theory when considering the types of signed butterflies

that would be constructed. This is in comparison to only using

the degrees in a method similar in nature to a signed preferential

attachment model with xd . We denote the supervised classifiers

that use xdi j and xsci j as SCd and SCsc, respectively.

3.2 Low-Rank Sign Prediction
In recent years the low-rank matrix factorization approaches have

been gaining popularity for numerous applications involving link

related network predictions [18, 34, 34, 38]. Although some of these

works have focused on signed networks [14, 18, 38], none are struc-

tured to select link signs that would explicitly push towards more

signed butterflies being balanced in signed bipartite networks. Thus,

we first introduce a basic matrix factorization approach tomodel the

signed bipartite network using the biadjacency matrix B. Then we

introduce how we can successfully modify this model through the

inclusion of additional pairs of buyers and sellers derived from sug-

gested implicit signed links that would construct the most balanced

signed butterflies with the suggested link sign.

3.2.1 Basic Matrix Factorization Model. The set of existing edges

in B are denoted in the set E = {(bi , sj )|B , 0}. In terms of the link

sign prediction task we would like to discover two latent matrices

U = [u1, u2, . . . , unB ] ∈ R
d×nB

andV = [v1, v2, . . . , vnS ] ∈ R
d×nS

of dimension d for the set of buyers and sellers, respectively, to

solve the following optimization problem:

min

U,V

∑
(bi ,sj )∈E

max

(
0, 1 − Bi j (u⊤i vj )

)
2

+ λ
(
|U|2F + |V|2F

)
(1)

where u⊤i vj is used to model the link sign between buyer bi to seller
sj . Note that when the real link sign (i.e., Bi j ) and the predicted

link sign (i.e.,u⊤i vj ) are of the same sign (i.e., both positive or both

negative) then Bi j (u⊤i vj ) is positive, and if over 1 then there is no

loss. However, when the real and predicted values have differing

signs then there is a higher loss value associated to drive the mini-

mization during the training process. Following the work in [18] we

use Stochastic Gradient Descent (SGD) to minimize the objective

in Eq. (1).

This allows us to then utilize the learned low-dimensional repre-

sentations for each buyer and seller to predict the sign of unknown

buyer and seller pairs. However, although this model is effectively

learning a representation that can accurately predict the existing

links, it does not explicitly control whether the signs of non-existing

links are actually going to predict link signs that adhere to balance

theory (i.e., having more signed butterflies balanced than unbal-

anced). Therefore we denote this method simply as MF. Next, we

will present an extension to this basic framework to further ensure

more signed butterflies between the missing links are balanced.

3.2.2 Matrix Factorization with Balance Theory. As previously dis-

cussed, the aforementioned basic matrix factorization approach

given in Eq. (1) does not explicitly enforce the non-existing link

signs to favor balanced relationships. Instead it can only focus on

learning low-dimensional representations for each buyer and seller

such that the model minimizes the error on predicting the existing

link signs. The approach we have selected is to further encour-

age the model learning link signs for buyer and seller pairs that

currently do not exist in the signed bipartite network, but would

convert many signed caterpillars into balanced signed butterflies if

they were to exist.

The first step is calculating whether balance theory would sug-

gest a positive or negative link for each buyer and seller pair (bi ,sj ),
that currently do not have a link between them, based on the types

of signed caterpillars they’re jointly involved in and the endpoints

of.

Theorem 3.1. Given a signed undirected biadjacency matrix B,
then the matrix Ŝ = BBT B ⊙ B is such that siдn(Ŝi j ) suggests the
sign of a non-existent link in B that would result in a net gain of |Ŝ|
additional balanced signed butterflies created (after subtracting the
number of potential unbalanced signed butterflies created simultane-
ously) if the suggested signed link were to be added between bi and sj ,
where we define B as Bi j = 0 if Bi j , 0 and Bi j = 1 when Bi j = 0.

Proof. If we letA =
[

0 B
BT 0

]
be the adjacencymatrix inR |U |×|U |

.

We can observe that A3 =
[

0 BBT B
BT BBT 0

]
. We note that in [12] it

has been shown Al = Ml
B −Ml

U , whereMl
B ,M

l
U ∈ R |U |×|U |

store

the number of balanced and unbalanced paths of length l , respec-
tively, between all pairs of nodes in a signed network represented

as A. Thus, since A3

i j =
[
BBT B

]
i j for some buyer bi and seller sj ,

we observe that this represents the number of of balanced paths of

length 3 subtracted by the number of unbalanced paths of length 3.

By definition of a signed caterpillar, if one is a balanced path, then

it would suggest a positive link to close to be a balanced signed

butterfly, but if it was formed by an unbalanced path it would re-

quire the closing link to be negative to form a balanced butterfly.

Therefore, it follows that siдn(
[
BBT B

]
) = siдn

(
Ml
B −Ml

U
)
indeed

represents the sign that would promote the creation of more bal-

anced signed butterflies, and similarly for the net gain of balanced

butterflies being formed equaling the absolute value of their differ-

ence (i .e, |Ml
B −Ml

U |). It is then easy to extend to only the buyer

and seller pairs bi and sj in
[
BBT B

]
⊙ B after taking the element-

wise product with B that zeros out the pairs that have an existing

link. □
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Note that Ŝ can also be calculated (sometimes more efficiently)

using the following:

Ŝi j =

{[
BB⊤B

]
i j if Bi j = 0

0 otherwise

to avoid using the potentially very dense matrix B for sparse signed

bipartite networks.

Using Theorem 3.1 we can construct additional sets E+i and E−
i

of implicit positive and negative links, respectively, suggested by

balance theory that would create the highest net gain of balanced

signed butterflies in the signed bipartite network. We define these

sets as follows:

ˆE+i = {(bi , sj ) | Ŝi j > 0 and Ŝi j ∈ topk (Ŝ)}
ˆE−
i = {(bi , sj ) | Ŝi j < 0 and Ŝi j ∈ bottomk (Ŝ)} (2)

where topk (Ŝ) and bottomk (Ŝ) are used to denote the k largest and

smallest values, respectively, in Ŝ.
We formulate our object that incorporates balance theory as

follows:

min

U,V

∑
(bi ,sj )∈E

max

(
0, 1 − Bi j (u⊤i vj )

)
2

+ λ
(
|U|2F + |V|2F

)
+ α

∑
(bi ,sj )∈ ˆE+i

max

(
0, 1 − Ŝi j (u⊤i vj )

)
2

+ β
∑

(bi ,sj )∈ ˆE−
i

max

(
0, 1 − Ŝi j (u⊤i vj )

)
2

(3)

where α and β are used to control the level at which we incor-

porate the modeling of signed butterflies through the inclusion

of the implicit positive and negative links, respectively. We again

note that these implicit positive and negative links are implied by

balance theory by using Ŝ, which effectively counts for each node

pair (bi , sj ) what the net gain of total balanced signed butterflies

would be once including the link with the suggested sign (according

to the majority count of signed caterpillars being of balanced or

unbalanced paths of length 3). We denote this matrix factorization

method using balance theory as MFwBT.

3.3 RandomWalk Based Sign Prediction
Typical propagation based methods, such as the random walk with

restart [40] have seen many variants and been applied to solve

link prediction and ranking related tasks in unsigned unipartite

networks. However, signed bipartite networks pose multiple chal-

lenges that prevent them from directly using the typical methods.

One such problem is that bipartite networks do not have a sta-

tionary distribution and thus do not converge [31]. One way of

handling this problem in unsigned bipartite networks is considered

a “lazy” random walk, where the walker will probabilistically stay

at the same node. We will later use this method as a comparison

against our proposed random walk based method. Furthermore

as seen in previous sign prediction methods for unipartite signed

networks, balance theory is the key component towards obtaining

higher performance when predicting the sign of unknown links.

Thus, due to our analysis of the signed butterflies, indeed signed

bipartite networks are showing high levels of balance and therefore

Figure 3: High-level intuition of how we construct A.

we should also be using balance theory to guide the random walk

based method for signed bipartite networks towards a solution

having more balanced relations.

Here we present a random walk based approach that integrates

the UB and US one-mode projection adjacency matrices, which

are constructed using balance theory, to aid in handling the issues

faced with the bipartite setting, and develop a signed random walk

based approach to not only allow a proper transition matrix, but to

furthermore have the random walker be promoting balance theory.

The first step will be the construction of a signed adjacency matrix

A based on balance theory, followed by defining a signed transition

matrix that can further promote and propagate balanced relations

throughout the network.

3.3.1 Constructing the one-mode adjacency matrices. In unsigned

bipartite network analysis one-mode projections are typically used

for both analysis and aiding to solve various tasks [16, 50, 51].

They are constructed by creating a projection network that creates

implicit connections between nodes of the same type. In terms of our

definitions, two one-mode projection networks can be performed,

one that connects the buyers inUB together amongst themselves

and the other for the sellers inUS by constructing seller to seller

links; these relations can be represented in the adjacency matrices

PB ∈ R |UB |× |UB |
and PS ∈ R |US |× |US |

. A visual example can be

seen in Figure 3 when going from B to PS and PB from left to right

through the first arrow.

We note that there is not just one way to discover these implicit

connections between pairs of users in the same set, and in fact

there are many possible methods for one-mode projections [50, 51].

It has also been studied that using different methods to construct

the projection networks can cause drastic changes to the usabil-

ity and performance [47]. In wanting to carefully construct these

projection networks, we choose to utilize balance theory in the

form of signed triangles. Next we will discuss the formation of the

adjacency matrix PB , and a similar process can be followed for

constructing PS (although we only discuss PB here).

Based on the ideas of common neighbor similarity in unsigned

networks, we will possibly connect two buyers bi and bj if they
have at least one seller in common they are linked to. Let the

number of common sellers that bi and bj agree upon (in terms of

link sign) be denoted as nsAij . Similarly let nsDij denote the number

of sellers these two buyers disagree on in terms of link sign. Then

we define PBi j = PBji = nsAij −nsDij , which we can see is taking the

number of sellers they agree upon in terms of signed connections

(i.e., both either negatively or positively connected to that seller)

and subtracting the number of sellers they disagree on (i.e., the
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sellers where one buyer has a positive link while the second buyer

has a negative connection with that seller). We can now further see

the connection between PBi j and the common neighbor similarity

method. It is easy to verify that out of all the triangles formed

between bi , bj , and the sellers sk they are commonly linked to, that

using the links Bik , Bjk and PBi j , we see that the majority will

adhere to balance theory. This is by design since if naAij > naDij then

siдn(PBi j ) is positive and closing the nsAij triangles to be balanced,

while the lesser number of nsDij will close to be unbalanced. Note

that a similar argument can be given when nsAij < nsDij and if

nsAij = nsDij then PBi j = 0 and no signed triangles are formed.

Ultimately, we construct a parameterized version as follows:

PBi j =

{
0 δn < nsAij − nsDij < δp

nsAij − nsDij otherwise

(4)

where δp and δn are used to define thresholds for the necessary

magnitude of nsAij − nsDij to have a non-zero value in PBi j . This
allows us to ignore adding smaller values (e.g., 2), since in some

settings having such a small value might not be very significant

and thus we might not want to construct a link between bi and
bj . Note that for simplicity we allow δp and δn to be shared for

constructing both PB and PS .

3.3.2 Performing the random walk. Now having the two projec-

tion adjacency matrices PB and PS , we can use them to construct

an adjacency matrix A ∈ R |U |×|U |
, which will be the unibipar-

tite signed network we perform our random walk on, whereU =

{b1, . . .bnB , s1, . . . snS }. In Figure 3 we show the high-level intu-

ition of how to construct A. First we denote B̂ as the row normal-

ized biadjacency matrix where B̂i j = Bi j/
∑
k
|Bik |. We similarly

construct row normalized adjacency matrices P̂B and P̂S . Now we

can formulate A as follows:

A =
[
P̂B ωB̂
ωB̂T P̂S

]
(5)

where ω is a parameter that can be used to bias the random walker

to favor the real links in our signed bipartite network as compared

to the implicit links we obtained through theUB andUS one-mode

projection networks. Next we construct a similar row normalized

adjacency matrix Â where Âi j = Ai j/
∑
k
|Aik |.

Finally, we utilize Â in a random walk propagation model where

we define Y to be the matrix holding the inferred link signs as

follows:

Yi j =
∑
k

ÂikYk j (6)

Next we describe how the above adheres to balance theory in terms

of triangles of the adjacency matrix A. This is because for some k if

ÂikYk j > 0 it increases Yi j ensuring it to be positive, which would

be a triangle consisting of either three positives, or two negatives

and a positive. Similarly when ÂikYk j < 0 we are decreasing Yi j
and encouraging it to be negative, thus also following balance

theory. The closed form solution that includes the restart capability,

with probability (1 − c), is given to be the following:

Y = (1 − c)(I − cÂ)−1 (7)

Note that each signed butterfly involving bi , sj ,bk , and sl in the

original network B now consists of up to

(
4

3

)
triangles in Â. Thus,

when we are encouraging balanced triangles here in Y this cor-

relates to having balanced signed butterflies in the upper right

corner of Y, which is where we obtain the link sign predictions (i.e.,

when predicting the sign between bi and sj we have use B̂i j′ where
j ′ = (nB + j). We denote this method as Signed Bipartite Random

Walk (SBRW).

For comparison, if we set the two one-mode projection matrices

to the identity matrix (i.e., PB = PS = I) and set ω = 1 then Eq. 6

becomes the equation for a lazy random walk method, which we

denote as LazyRW.

4 EXPERIMENT
In this section, we empirically evaluate our proposed sign predic-

tion methods for signed bipartite networks that harness balance

theory. We seek to answer the following: (1) Does the extended

balance theory to signed butterflies in the bipartite setting provide

an increase in performance for sign prediction? and (2) How do the

proposed methods work/compare? To address these questions we

perform experiments to measure the performance for each of the

proposed sign prediction methods across three real-world signed

bipartite networks. To better understand our methods and the con-

tribution of balance theory, we also follow-up with a parameter

sensitivity analysis for the major parameters of our methods.

4.1 Experimental Settings
Here we discuss the settings used for our experiments on sign

prediction in signed bipartite networks. As previously discussed

in Section 2.1 we have collected three signed bipartite networks

for this study, namely, Bonanza, U.S. Senate, and U.S. House. For

our sign prediction experiments we have randomly selected 10% of

the links as test, utilized a random 5% for validation purposes of

tuning the hyperparameters of our models, and the remaining 85%

as training for each of our datasets. More specifically, each method

is only given access to the signed bipartite network induced from

the training links, then, for each edge in the testing set, we compare

the ground truth link sign with the link sign the specific method

suggests for that undirected pair. For evaluation we use both F1

and Area Under the receiver operating characteristic Curve (AUC),

since the positive and negative links are unbalanced especially in

the Bonanza dataset. To the best of our knowledge this is the first

study of predicting link signs in signed bipartite networks; hence

other existing methods either for unipartite signed or unsigned

bipartite networks are likely not applicable. The main investigation

is two-fold. First, we want to test the applicability of balance theory

(based on signed butterflies) to aid in sign prediction. Second, we

want to provide insights to guide practical usage of sign predictors

with different types of signed bipartite networks. Thus, we only

provide a comparison against the methods we have presented in

this work. Our code and data are available at https://github.com/

DSE-MSU/signed-bipartite-networks.

https://github.com/DSE-MSU/signed-bipartite-networks
https://github.com/DSE-MSU/signed-bipartite-networks
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Table 4: Link Sign Prediction Results in terms of (AUC,F1).

Sign Prediction

Method

Bonanza U.S. Senate U.S. House

SCd (0.553 , 0.959) (0.638 , 0.654) (0.625 , 0.635)

SCsc (0.664 , 0.674) (0.812 , 0.823) (0.827 , 0.837)

MF (0.593 , 0.903) (0.792 , 0.812) (0.831 , 0.846)

MFwBT (0.608 , 0.905) (0.814 , 0.827) (0.834 , 0.848)

LazyRW (0.547 , 0.979) (0.808 , 0.821) (0.815 , 0.827)

SBRW (0.582 , 0.949) (0.836 , 0.849) (0.846 , 0.858)

4.2 Comparison Results
The results across our three signed bipartite networks in terms of

AUC and F1 can be found in Table 4 and the first observation we

make is that there is not one proposed method that outperforms

the others across all the datasets.

The second observation we make is that the three methods SCsc,

MFwBT, and SBRW, which receive aid in prediction from balance

theory when defined using signed butterflies, always perform better

than their respective baseline method (i.e., SCd, MF, LazyRW) that

only use generic signed network information in terms of AUC and

only in two cases the F1 is worse. In the Bonanza dataset we have

the SCd and LazyRW outperforming SCsc and SBRW, respectively,

in terms of F1 (although performing worse in AUC). The reason

for this is the heavy imbalance between the positive and negative

links in this dataset, more specifically, almost 98% of the links are

positive, which is generally a setting where the AUC measurement

is preferred to understand the performance better. Therefore we can

see that to better detect the few negative links comes at the sacrifice

of misclassifying some of the positive links, which is why the F1

of SCsc and SBRW is less than SCd and LazyRW, but comes with a

significant increase in AUC. In general we observe that in fact the

usage of signed butterflies for sign prediction in signed bipartite

networks provides a very significant improvement in almost all

cases. This fact suggests that we can give a positive answer to our

first question – the usage of balance theory in the form of signed

butterflies for sign prediction in signed bipartite networks indeed

provides an empirically verifiable improvement.

In the U.S. Senate and U.S. House datasets, for the methods

constructed based on intuitions of how to correctly ensure more

balanced signed butterflies are being created when predicting miss-

ing link signs (i.e, SCsc, MFwBT, and SBRW), we see the low-rank

model outperforms the the supervised classifier approach, while

the random walk method performs the best (for both AUC and F1).

However, unlike the two U.S. Congress datasets, in the Bonanza

dataset we actually observe the complete opposite behavior (in

terms of AUC) for the ranking of methods that utilize the signed

butterfly based balance theory. We hypothesize this is due to the

heavy class imbalance between the positive and negative links.With

this imbalance the SBRWmethodmight be unable to directly handle

this setting as the parameters only focus on separating real/implicit

and balance/unbalance through ω and δp/δn . Futhermore, if most

negative links are involved in balance relationships then actually

(a) MFwBT (AUC) (b) MFwBT (F1)

Figure 4: Parameter Sensitivity on α and β in MFwBT on the
U.S. Senate dataset.

this would cause even more positive links to be constructed in the

two one-mode projectionmatrices (since two negatives would result

in a positive link being created). In comparison, MFwBT is able to

more accurately control the ratio of positive to negative implicit

links being used in the training procedure (through selecting the

size of both
ˆE+i and

ˆE−
i ) when extracting them from investigating

which links would cause the most signed caterpillars to turn into

balance signed butterflies. Also, we note that in our study we fixed

α = β , but this mechanism would further allow MFwBT to balance

the contribution of implicit positive and negative links towards

learning the most effective representations. Finally, although we

see a drastic improvement in terms of AUC for the SCsc method, we

also observe this comes at great cost to the F1 measure, and thus this

method is just discovering a trade-off of predicting more negative

links. This is because we have tuned our logistic regression model

to use weights on each training example inversely proportional to

the frequency of that link type.

4.3 Parameter Analysis
Among our three proposed sign prediction methods, the low-rank

modeling with balance theory (MFwBT) and random walk (SBRW)

methods contain interesting hyperparameters from the perspective

of wanting to further understand balance theory in signed bipartite

networks.

In our MFwBT method, we discussed that we can control the

number of suggested implicit positive and negative links from

signed butteflies being included in E+i and E−
i , respectively. We

performed a grid search for both the size of E+i and E−
i , in the set

{0,1000,10000}. We discovered that the best setting when considering

across the three datasets was having |E+i | = 1000 and |E−
i | = 10000,

which we suspect is due to the class imbalance and having more

explicit positive links than negative links. Furthermore, the values

of α and β were used to control the contribution of training on both

positive and negative links suggested based on signed butterflies

(i.e., links in E+i and E−
i ), respectively. For simplicity of our analy-

sis we set α = β and report the performance on our validation set

for the U.S. Senate dataset in Figure 4. We observe that updating

the node representations using suggested signed links (that were

selected since they would close the most signed caterpillars into

balanced signed butterflies) provides an improvement over not tak-

ing balance theory into account (which is when α = β = 0), but

care should be taken to not put too much focus on these implicit

links. We observe similar findings in our other datasets.
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(a) SBRW (AUC) (b) SBRW (F1)

Figure 5: Parameter Sensitivity on δp and δn in SBRW on the
U.S. House dataset.

For our SBRW method, there are two main sets of parameters ω
and the threshold pair δp with δn . We variedω at a large granularity

in the set {1, 2, 3, 5}, and observed there was not as much significant

difference as found in varying δp and δn , thus we selected the best

on average across the three datasets of ω = 2 and fixed this value

to investigate the impact of δp and δn on the performance for

predicting the missing link signs.

In Figure 5, for the U.S. House dataset, we varied both δp in the

set {0,25,50,75,100} and similarly for δn in the set {0,-25,-50, -75,

-100}. Note that although we saw similar trends across the three

datasets, the specific magnitude of δn and δp we needed to tune

separately for each dataset due to the average magnitude ofnsAij and

nsDij (i.e., number of common sellers bi and bj agree or disagree on,

respectively) for constructing PB and similarly for PS , although we

fixed δp and δn for constructing both one-mode projection matrices.

We observe in terms of both AUC and F1 from Figure 5 that indeed

using these two thresholds to avoid implicit links that do not have

a significant amount of information (i.e., low magnitude of |nsAij -

nsDij |) provides great improvement to our method. It appears that

implicit positive links that have low support are helpful to include.

However, it seems better to avoid inferred negative links, which we

obtained based on balance theory in the form of signed triangles

between two buyers and a seller (similarly for the case of two sellers

and a buyer). Although including a few is helpful, ones that have

low amount of balance theory support from the network are better

left out of the propagation process.

5 RELATEDWORK
Our work is mostly related to signed network analysis [26, 28, 39],

which has primarily been studied in the unipartite setting, and also

to unsigned bipartite methodologies [1, 24, 51].

There have been numerous works that focus on sign prediction

under the unipartite setting [7, 13, 19, 27, 35, 49]. In [7] a supervised

classifier was presented exploiting balance theory through cycles

of length 3 and greater to predict signs. However, unlike our work,

they were focused in the directed unipartite signed network setting.

In comparison, we perform a comprehensive analysis where we

first extend balance theory to signed bipartite networks and then

use our proposed signed butterflies for sign prediction in the setting

of having two types of nodes where links are only between differing

types. Signed network embedding [10, 43, 44, 48] is a related area

of research that seeks to learn a representation for each node in a

signed network that can then later be used for a plethora of tasks

including sign prediction, node classification, and visualization.

However, they are not specifically designed for bipartite networks

and those that utilize balance theory primarily harnessed the social

theory by leveraging triangles, which would not be applicable here.

Another related domain is that of applying signed network analysis

to political networks, such as congressional vote analysis [11, 21,

29].

Although here we perform sign prediction, our work is closely re-

lated to link prediction in unsigned bipartite networks [3, 24, 25, 30].

One such approach is a local method similar to common-neighbors,

but given for bipartite networks in [8]. In [25] numerous meth-

ods are provided for predicting links in bipartite networks, such

as graph kernels (e.g., Exponential kernel [22]) and a preferential

attachment based approach to predict missing links. In [16] they

use the one-mode projection matrix to construct a candidate set and

only predict links if nodes are among the discovered set of similar

nodes. Most recently, a bipartite network embedding algorithm

was presented in [15] that achieves state-of-the-art performance

on predicting links in unsigned bipartite networks, by using ran-

dom walks to extract implicit links to boost performance beyond

only using explicit links, which is somewhat similar to the ideas of

MFwBT.

6 CONCLUSION
In conclusion, signed bipartite networks are a specific type of net-

works that have become increasingly ubiquitous, but yet fall be-

tween the cracks since their added complexities coming from both

the negative links and bipartite setting have left both methods and

theories lacking the capability to correctly handle them. Mean-

while, balance theory, a key signed social theory, has shown to

provide vast improvements in modeling, measuring, and mining

tasks related to signed networks when utilized in the form of trian-

gles. Thus, we provided an initial investigation of balance theory

in signed bipartite networks that: (1) extends the definition in the

form of signed butterfly isomorphism classes; (2) validated that in-

deed balanced signed butterflies are found significantly more often

as compared to unbalanced in signed bipartite networks; (3) lever-

aged balance theory for the construction of multiple sign prediction

methods; and (4) performed experiments on three real-world signed

bipartite networks to provide insight into both balance theory and

sign prediction in signed bipartite networks.

Our future work will first consist of gaining an even better

understanding of the dynamics of signed bipartite networks and

how social theories such as balance theory affect their construc-

tion/evolution. Thereafter, we plan to utilize signed butterflies for

other network analysis tasks in the signed bipartite setting such as

network embedding [10, 44] and tie strength prediction [46]. We

also plan to further pursue the usefulness of the signed bipartite

network formulation of the US Congress for in-depth analysis and

prediction tasks such as “swing votes”, which are votes coming from

a representatives that is voting against what their party suggests.
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