
Tree Decomposed Graph Neural Network
Yu Wang

yu.wang.1@vanderbilt.edu
Vanderbilt University

Tyler Derr
tyler.derr@vanderbilt.edu
Vanderbilt University

ABSTRACT
Graph Neural Networks (GNNs) have achieved significant success
in learning better representations by performing feature propa-
gation and transformation iteratively to leverage neighborhood
information. Nevertheless, iterative propagation restricts the infor-
mation of higher-layer neighborhoods to be transported through
and fused with the lower-layer neighborhoods’, which unavoidably
results in feature smoothing between neighborhoods in different
layers and can thus compromise the performance, especially on het-
erophily networks. Furthermore, most deep GNNs only recognize
the importance of higher-layer neighborhoods while yet to fully
explore the importance of multi-hop dependency within the context
of different layer neighborhoods in learning better representations.
In this work, we first theoretically analyze the feature smoothing
between neighborhoods in different layers and empirically demon-
strate the variance of the homophily level across neighborhoods
at different layers. Motivated by these analyses, we further pro-
pose a tree decomposition method to disentangle neighborhoods in
different layers to alleviate feature smoothing among these layers.
Moreover, we characterize the multi-hop dependency via graph
diffusion within our tree decomposition formulation to construct
Tree Decomposed Graph Neural Network (TDGNN), which can
flexibly incorporate information from large receptive fields and ag-
gregate this information utilizing the multi-hop dependency. Com-
prehensive experiments demonstrate the superior performance of
TDGNN on both homophily and heterophily networks under a
variety of node classification settings. Extensive parameter analysis
highlights the ability of TDGNN to prevent over-smoothing and
incorporate features from shallow layers with deeper multi-hop
dependencies, which provides new insights towards deeper graph
neural networks. The implementation of TDGNN is available at
https://github.com/YuWVandy/TDGNN.

KEYWORDS
graph neural networks, tree decomposition, multi-hop dependency

ACM Reference Format:
Yu Wang and Tyler Derr. 2021. Tree Decomposed Graph Neural Network.
In Proceedings of the 30th ACM International Conference on Information
and Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event,
QLD, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3459637.3482487

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482487

1 INTRODUCTION
Graph representation learning has recently emerged as a powerful
strategy for node classification [7, 9, 12, 31], graph classification [9,
30, 35, 39] and link prediction [1, 42] on graph-structured data. As
the generalization of deep learning to the graph domain, Graph
Neural Networks (GNNs) have become one of the most promising
paradigms [26], which adopts a neighborhood aggregation scheme
to learn node representations by utilizing both the node features and
the graph topology [12, 31, 34]. A typical GNN architecture for node
classification consists of two stages: propagation/aggregation and
transformation. First, messages are propagated from neighboring
nodes to their corresponding center nodes and then aggregated
together. Afterwards, the aggregated messages are transformed
by the transformation layer to extract useful node representations.
These two stages are packed together and termed as one layer of
graph convolution. Deep GNNs iteratively perform multiple graph
convolutions to obtain a larger receptive field and thus incorporate
information of neighborhoods in higher layers [3, 8, 17, 25].

Although GNNs have gained significant achievements, a com-
mon challenge faced by GNNs is known as the over-smoothing
problem [2, 15]: the performance of GNNs degrades when stack-
ing multiple graph convolution layers. Most popular models, such
as GCN [12] and GAT [31], achieve their best performance with
2-layer graph convolutions. Such shallow architectures limit their
ability to extract information from higher-layer neighborhoods.
However, stacking multiple layers to increase the receptive field
tends to fuse representations of nodes from different classes and
thus make them indistinguishable due to iterative propagation [17].
Earlier works have found that the stationary point that node rep-
resentations converge to is determined by node degrees and their
features [15, 27]. However, these works focus on the theoretical
analysis of the steady state in the limit of propagation while yet to
provide effective solutions to solve the over-smoothing problem.

Stepping further, several methods propose deep GNNs to incor-
porate higher-layer neighborhood information through iterative
propagation [13, 14, 25, 34]. For example, GCNII [3] applies an initial
residual connection and identity mapping to enable GCN to express
a 𝐾 th-order polynomial filter with arbitrary coefficients. Never-
theless, more recently, it has been analyzed that the performance
degradation due to over-smoothing is because the entanglement of
feature transformation and propagation [17]. Building upon this,
DAGNN [17] proposes to decouple the feature propagation and
transformation, and learn node representations by adaptively in-
corporating information from larger receptive fields. However, the
propagation in all of previous deep models is executed iteratively
so that the information of higher-layer neighborhoods is restricted
to be transported through and fused with the lower-layer neighbor-
hoods’ and then propagated to their corresponding center nodes,
which unavoidably informs feature smoothing between neighbor-
hoods in different layers.

ar
X

iv
:2

10
8.

11
02

2v
1

 [
cs

.L
G

]
 2

5
A

ug
 2

02
1

https://github.com/YuWVandy/TDGNN
https://doi.org/10.1145/3459637.3482487
https://doi.org/10.1145/3459637.3482487
https://doi.org/10.1145/3459637.3482487

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Yu Wang and Tyler Derr

Therefore, although different deep GNNs [3, 4, 8, 17] develop
their own techniques, their core component is to apply multiple
graph convolutions (mixed-order propagation [8]) to incorporate
more neighborhood information from a broader neighboring range.
As a result, the importance of depth of GNNs has raised significant
concern while the importance of width of GNNs is rarely researched.
It is shown in [8] that the mixed order propagation rule enables
their model to incorporate more local information but does not
clarify the relationship between the propagation rule and the local
information. Additionally, in [32], they observe that nodes can not
only attend to their immediate neighbors but can also extract useful
information from their multi-hop neighboring context. However,
this work considers this multi-hop neighboring context in a specific
attention framework. Different from previous works, we propose
the general concept of multi-hop dependency as a measurement of
the width of GNNs, and empirically demonstrate its importance in
learning node representations.

In view of the challenge that features of higher-layer neighbor-
hoods are over-smoothed with the lower-layer neighborhoods and
noticing the importance of the multi-hop dependency, we propose
an effective framework, termed as Tree Decomposed Graph Neu-
ral Network (TDGNN), to learn node representations from larger
receptive fields without causing feature over-smoothing between
different layers of neighborhoods and allow flexible layer configu-
rations to avoid under-performance on heterophily networks. Our
major contributions are listed as follows:

• Motivated by our theoretical analysis on feature smoothing
and empirically demonstration of the variance of the ho-
mophily level across neighborhoods in different layers, we
propose a tree decomposition method to disentangle features
of neighborhoods in different layers, which can help alleviate
the problem of feature smoothing and provides more flexible
layer configurations for complex networks.

• We capture and maintain the importance of multi-hop de-
pendency in learning better representations within our tree
decomposition method by characterizing this multi-hop de-
pendency by graph diffusion, which ultimately leads to the
construction of proposed Tree Decomposed Graph Neural
Network (TDGNN).

• We conduct experiments in both semi-supervised and full-
supervised settings and on both homophily and heterophily
network datasets to comprehensively demonstrate the su-
periority of our proposed TDGNN framework over existing
methods. Additionally, we perform a parameter analysis to
better understand and contrast TDGNN to prior GNNs.

The rest of the paper is organized as follows. In Section 2, we de-
fine necessary notations and briefly introduce the supervised node
classification problem and GNNs.We present our proposed TDGNN
framework in Section 3, which consists of the tree decomposition
procedure to disentangle feature information of neighborhoods in
different layers, the graph diffusion procedure to model multi-hop
dependencies, and layer aggregation procedure to enable adaptive
combination of aggregated representations of different layers. In
Section 4, experiments are performed to evaluate the effectiveness
of our framework. Related work is then presented in Section 5.
Finally, we conclude and discuss future work in Section 6.

2 PRELIMINARIES
In this section, we first introduce the notations and definitions that
are used throughout this paper, and then provide a brief background
on the supervised node classification problem and GNNs.

2.1 Notations
Let G = (V, E,X) denote an unweighted and undirected network,
where V = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of 𝑛 nodes (i.e., 𝑛 = |V|),
E ⊂ V × V is the set of 𝑚 edges (i.e., 𝑚 = |E |) between nodes
in V with 𝑒𝑖 𝑗 denoting the edge between the node 𝑣𝑖 and node
𝑣 𝑗 , and X ∈ R𝑛×𝑑 denotes the node feature matrix, where each
row x𝑖 ∈ R𝑑 represents the feature vector of node 𝑣𝑖 and 𝑑 is the
dimension of node features. The topological information of the
whole network G is described by the adjacency matrix A ∈ R𝑛×𝑛 ,
where A𝑖 𝑗 = 1 if an edge exists between node 𝑣𝑖 and node 𝑣 𝑗 (i.e.,
if 𝑒𝑖 𝑗 ∈ E), and A𝑖 𝑗 = 0 otherwise. The diagonal matrix of node
degrees are notated asD ∈ R𝑛×𝑛 , where the degree of the node 𝑣𝑖 is
calculated by D𝑖𝑖 =

∑
𝑗 A𝑖 𝑗 . Additionally, we let Ã = A+ I represent

the adjacency matrix with added self-loops and similarly let D̃
represent the diagonal degree matrix with the diagonal element
D̃ = D + I. N𝑖 is the neighborhood node set of the center node 𝑣𝑖 ,
which is given byN𝑖 = {𝑣 𝑗 |𝑒𝑖 𝑗 ∈ E}. We then extend this definition
by using N𝑙

𝑖
to denote the 𝑙-th layer neighborhood nodes of the

center node 𝑣𝑖 , which includes all nodes that can be reached from
the center node 𝑣𝑖 in exactly 𝑙 hops.

2.2 Supervised Node Classification Task
In this work, we focus on the node classification task and leave the
application of our framework on other tasks, such as link prediction,
as one future work. More specifically, we consider the transductive
node classification problem where we are provided with the labeled
node setV𝑙 ⊂ V associated with the node label matrixY ∈ R |V𝑙 |×𝐶

with 𝐶 number of classes, the goal is to learn a mapping 𝐹 : R𝑛×𝑑 ×
R𝑛×𝑛 → R𝑛×𝐶 , which takes as input the feature matrix X and
adjacency matrix A, and outputs the predicted𝐶-dimensional node
representation Z ∈ R𝑛×𝐶 .

2.3 Graph Neural Networks
Typically, most graph neural networks (GNNs) can be decomposed
into two operational procedures: (1) neighborhood propagation
and aggregation, and (2) feature transformation. The neighborhood
propagation and aggregation can be formalized as follows:

ĥ𝑙𝑖 = AGGREGATION𝑙 (h𝑙−1𝑖 , {h𝑙−1𝑗 | 𝑗 ∈ N𝑖 }), (1)

where representations of neighborhoods at the previous layer {h𝑙−1
𝑗

| 𝑗 ∈
N𝑖 } are propagated to the center node 𝑣𝑖 and further fused with its
own representation h𝑙−1

𝑖
from the previous layer via AGGREGATION𝑙

function at layer 𝑙 to get the partial representation ĥ𝑙
𝑖
. Note that h0

𝑖
of node 𝑣𝑖 is initialized as the original node feature x𝑖 . Then, after
the aggregation procedure, the TRANSFORMATION𝑙 function at
layer 𝑙 is applied on ĥ𝑙

𝑖
to get the representation h𝑙

𝑖
of node 𝑣𝑖 at

layer 𝑙 and defined as follows:

h𝑙𝑖 = TRANSFORMATION𝑙 (ĥ𝑙𝑖), (2)

Tree Decomposed Graph Neural Network CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

Figure 1: Visualizing the variance of homophily across neighborhoods at different levels according to the distribution of the
ratio of different layer neighborhoods in the same class as their corresponding center nodes (i.e., (a) and (c)) and the cosine
similarity of their embeddings (obtained from feeding node features through only the transformation layers of a pre-trained
2-layer GCN) to their center nodes (i.e., (b) and (d)) for the Texas and Cora datasets.

where we can denote the node representations at 𝑙 th layer for all the
nodes in the network asH𝑙 ∈ R𝑛×𝑑𝑙 , where the 𝑖th row corresponds
to the representation of the node 𝑣𝑖 at layer 𝑙 (i.e., h𝑙𝑖 ∈ R

𝑑𝑙).
Most graph convolutions, such as GCN [12], GraphSAGE [10],

GAT [31], GIN [35], and SGC [34], can be obtained under this frame-
work by adopting and configuring different functions in AGGRE-
GATION and TRANSFORMATION. For instance, the vanilla GCN
model suggests using Ĥ𝑙 = ÂH𝑙−1 in AGGREGATION followed by
H𝑙 = 𝜎 (Ĥ𝑙W𝑙) in TRANSFORMATION, where Â = D̃− 1

2 ÃD̃− 1
2 is

the renormalized adjacency matrix to prevent gradient explosion,
W𝑙 ∈ R𝑑𝑙−1×𝑑𝑙 represents the weight matrix at layer 𝑙 transforming
features of dimension𝑑𝑙−1 to𝑑𝑙 , and𝜎 is ReLU. AlthoughGNNsmay
differ in their unique AGGREGATION and TRANSFORMATION
designs, most graph convolutions employ an iterative propagation
to increase their receptive field and incorporate information of
neighborhoods in higher layers. However, such iterative propaga-
tion inevitably causes feature smoothing between neighborhoods
in different layers. Furthermore, the enhanced performance caused
by leveraging iterative feature propagation guides us to pay more
attention to the importance of higher-layer neighborhoods while
the effect of multi-hop dependency still remains unclear.

Next, having defined the basic notations, background, and dis-
cussed some of the challenges for supervised node classification
and basic GNNs, we present our proposed framework with the pur-
pose of alleviating the feature smoothing between neighborhoods
in different layers and incorporating the multi-hop dependency.

3 THE PROPOSED FRAMEWORK
In this section, we design a Tree Decomposed Graph Neural Net-
work (TDGNN) by mainly solving the two challenges mentioned
in Section 1, which are feature smoothing between neighborhoods
in different layers and lack of considering the multi-hop depen-
dency in GNNs. For the first challenge, we theoretically show the
feature smoothing between different layers when applying itera-
tive propagation and further propose a tree decomposition method
to disentangle neighborhood information in different layers. For
the second challenge, we formalize the definition of the multi-hop
dependency and characterize it through a graph diffusion process.

Combining the tree decomposition method to disentangle the neigh-
borhood information on different layers and the graph diffusion
to model the multi-hop dependency, we propose TDGNN. We also
introduce two mechanisms to aggregate node representations of
each layer, TDGNN-s that directly sums the representations of all
layers together, and TDGNN-w that assigns learnable weights and
adaptively combines the node representations of each layer. The
whole framework is shown in Figure 3, which has three main com-
ponents: tree decomposition to handle feature smoothing between
different neighborhood layers, graph diffusion to model multi-hop
dependency, and aggregation to combine representations of differ-
ent layers. Next, we describe each of these components in detail.

3.1 Tree Decomposition
The basic assumption in GNNs is that the neighborhood informa-
tion of the center node leveraged by applying feature propagation
and aggregation can enhance the prediction performance of the
center node itself [36]. Such an assumption is justified by the core
network property, homophily, where linked nodes tend to share
similar features and typically belong to the same class [24, 44]. How-
ever, the level of homophily might be completely different among
different networks or even vary among different subgraphs within
the same network. One extreme situation would be the heterophily
network where linked nodes are likely from different classes or
have dissimilar features [21, 45].

In Figure 1, we show the level of homophily across different
neighborhood layers in the Cora and Texas datasets. More specif-
ically, the level of homophily is measured by distributions of the
ratio of neighborhoods N𝑙 in different neighborhood layers 𝑙 that
share the same class as (in Figure 1(a) and Figure 1(c)) and have
similar embeddings to (in Figure 1(b) and Figure 1(d)) their cor-
responding center nodes, which are obtained from feeding node
features only through the transformation layers in a pre-trained
2-layer GCN [12] without introducing any bias from feature prop-
agation. In the Cora dataset, it can be observed that the majority
of neighbors among their 1st-layer neighborhoods have the same
class as their corresponding center nodes, but the number of center
nodes that have most of their neighborhoods sharing the same
class as themselves decreases as the layer increases. Furthermore,

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Yu Wang and Tyler Derr

the embeddings of these neighborhoods on the 1st-layer, on av-
erage, have high similarity to their corresponding center nodes.
This demonstrates the high homophily of the Cora dataset on low
layers and propagating features of nodes in these low layers fuses
embeddings of nodes in the same class and thus makes embeddings
of different classes more separable. However, even for this extreme
homophily layer in this strong homophily Cora dataset [37], not
all of the nodes in the 1st-layer have all of their neighborhoods
sharing the same label with themselves and this strong homophily
becomes progressively weaker as we reach further out to higher
layers. For example, only around 10% of the nodes in the 3rd-layer
have all their neighborhoods sharing the same class and over half of
the nodes in the 10th-layer have nearly all neighborhoods different
from themselves. Even worse, in Texas dataset, even for low layers,
most of the neighborhoods have different classes from their center
nodes, especially for nodes on the 1st-layer, almost all nodes belong
to different classes from their center nodes, which demonstrates
the strong heterophily of the Texas dataset. Propagating features
of nodes in such low layers to their center nodes fuses embeddings
of nodes in different classes and makes those nodes indistinguish-
able, which results in learning worse node representations. Such
feature smoothing among different layers is unavoidable as long
as the procedure of iterative propagation is taken, that is: during
iterative feature propagation, the information of neighborhoods in
higher layers has to be transported through and fused with the infor-
mation of neighborhoods in lower layers and then propagated to their
corresponding center nodes.

If we take the most popular GNN-variant, a 2-layer GCN, as an
example (for simplicitly), then after 2-layer graph convolutions, the
representation of the node 𝑣𝑖 is:

h2𝑖 = 𝜎 (h
0
𝑖W

0)W1 (1
(𝑑𝑖 + 1)2

+
∑︁
𝑗 ∈N𝑖

1
(𝑑𝑖 + 1) (𝑑 𝑗 + 1))︸ ︷︷ ︸

0th-layer features (self)

+
∑︁
𝑗 ∈N𝑖

𝜎 (h0𝑗W
0)W1 (

𝑑𝑖 + 𝑑 𝑗 + 2
(𝑑𝑖 + 1)1.5 (𝑑 𝑗 + 1)1.5

)︸ ︷︷ ︸
1st-layer neighborhood features

+
∑︁
𝑗 ∈N𝑖

∑︁
𝑘∈{N𝑗∩N𝑖 }

𝜎 (h0
𝑘
W0)W1 1

√
𝑑𝑖 + 1

√︁
𝑑𝑘 + 1(𝑑 𝑗 + 1)︸ ︷︷ ︸

1st-layer neighborhood features

+
∑︁
𝑗 ∈N𝑖

∑︁
𝑘∈{N𝑗∩N2

𝑖
}
𝜎 (h0

𝑘
W0)W1 1

√
𝑑𝑖 + 1

√︁
𝑑𝑘 + 1(𝑑 𝑗 + 1)︸ ︷︷ ︸

2nd-layer neighborhood features

, (3)

which consists of three components corresponding to the feature
information of neighborhoods in the 0th, 1st, and 2nd layers. Eq. 3
intuitively shows that the representation of node 𝑣𝑖 after two itera-
tive graph convolutions contains the information of both 1st and
2nd- layer neighborhood information, which will compromise the
performance on Texas dataset since the feature and class informa-
tion of the 1st-layer is of great difference from their corresponding
center nodes according to Figure 1(a) and Figure 1(b). Even for

Figure 2: Tree decomposition of the center node 𝑣1 in the
given graph to two layers compared to the computational
graph in the original GNNs (e.g., GCN).

the Cora dataset, where the feature and class information of the
1st-layer neighborhoods is similar to their corresponding center
nodes, still some center nodes have neighborhoods in the 1st-layer
different from themselves and for these nodes, incorporating their
neighborhood information might compromise their predictions.

Thus, based on our analysis, to advance the frontier of GNNs
to be able to selectively leverage neighborhood information in
different layers, we propose a tree decomposition method. More
specifically, our proposed method disentangles neighborhoods in
different layers and connects them directly with their correspond-
ing center nodes. These direct connections allow the propagation of
higher-layer neighborhoods’ features to their corresponding center
nodes without any interference of lower-layer neighborhoods along
the way. Furthermore, this tree decomposition procedure enables
more flexible layer configurations of neighborhoods. For example in
Figure 2, we decompose the computational tree in GNNs of the cen-
ter node 𝑣1. Then in the training process, we selectively propagate
features of nodes in different layers: propagating along 1st-layer
subgraph, along 2nd-layer subgraph, and along both of these two
subgraphs. The choice depends on the network homophily of dif-
ferent layers and is determined by hyperparameter-tuning. The
adjacency matrix of the 𝑘th-layer subgraph T𝑘 obtained from tree
decomposition can be computed by the difference between corre-
sponding powers of the normalized adjacency matrices with added
self-loops and formalized as follows:

T𝑘 = sign(Â𝑘) − sign(Â𝑘−1) + I, (4)

sign(Â𝑘)𝑖 𝑗 =
{
1, if Â𝑘

𝑖 𝑗
> 0

0, if Â𝑘
𝑖 𝑗

= 0,
(5)

where Â0 = I is the identity matrix and Â = D̃− 1
2 ÃD̃− 1

2 is the renor-
malized adjacency matrix as previously defined. The equivalence
between T𝑘 and the 𝑘th-layer subgraph including the self-loop can
be easily proven, so we omit the details for brevity.

3.2 Multi-hop dependency
Although the tree decomposition could avoid the issue of feature
smoothing between different layers, we also lose the multi-hop
dependency captured by the original iterative propagation which
might cause over-smoothing [8]. Two nodes have multi-hop depen-
dency if they are connected by a path in the network and specifically
𝑘-hop dependency is defined as two nodes that are connected by at
least one simple path with length 𝑘 . For example in Figure 2, fea-
tures of node 𝑣2 cannot only be propagated along the edge 𝑣2 → 𝑣1

Tree Decomposed Graph Neural Network CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

Figure 3: An illustration of the proposed Tree Decomposed Graph Neural Network (TDGNN). For brevity, the pipeline to
generate the prediction for only one node is presented.

to 𝑣1 but can also along the longer path 𝑣2 → 𝑣5 → 𝑣6 → 𝑣3 → 𝑣1
to 𝑣1. However after tree decomposition, the edge 𝑣2 → 𝑣1 is the
only way for propagating features of 𝑣2 to 𝑣1. Instead of insert-
ing multiple edges between the higher-layer neighborhood nodes
and their corresponding center nodes, we model this multi-hop
dependency via graph diffusion [14]. Specifically, Â𝑖 represents
the 𝑖th-hop dependency and its entry Â𝑖𝑝𝑞 measures the strength of
paths of length 𝑖 in propagating features from node 𝑣𝑝 to 𝑣𝑞 . Assum-
ing the maximum hop of the dependency we consider is 𝐾 , since
𝑘th-layer (𝑘 ≤ 𝐾) neighborhood nodes can only propagate their
features along paths of length from 𝑘 to 𝐾 , thus the total multi-hop
dependencies from node 𝑣𝑝 to 𝑣𝑞 along these paths is calculated as∑𝐾
𝑖=𝑘

Â𝑖𝑝𝑞 . Such multi-hop dependency across the spectrum from 𝑘

to 𝐾 between a single pair of nodes can be further generalized to
all pairs of nodes in the graph via diffusion and defined as:

E𝑘,𝐾 =

𝐾∑︁
𝑖=𝑘

Â𝑖 , (6)

where E𝑘,𝐾 considers dependencies from paths of length 𝑘 to 𝐾 ,
which could be used as the edge weights for propagating node fea-
tures in the 𝑘th-layer subgraph obtained from tree decomposition.

3.3 Tree Decomposed Graph Neural Network
Now, having motivated and introduced the two major components
of our proposed framework, namely the tree decomposition and
multi-hop dependency formulations, we collect them together and
present our Tree Decomposed Graph Neural Network (TDGNN).
As previously noted, an illustration of our proposed TDGNN is
shown in Figure 3 and its corresponding mathematical formulation

is defined as:

H0 = MLP(X), (7)

H𝑘 = (T𝑘 ⊙ E𝑘,𝐾)H0, 𝑘 = 1, 2, ..., 𝐿, (8)

Z =

{∑𝐿
𝑘=0 H

𝑘 , TDGNN-s∑𝐿
𝑘=0 𝜃𝑘H

𝑘 , TDGNN-w.
(9)

We first apply a Multilayer Perceptron (MLP) network to the
original feature matrix X to get the initial representations of nodes
H0 [13, 17]. Then, we decompose the whole network by calculating
the adjacency matrix T𝑘 of 𝑘th-layer tree based on Eq. 4 and Eq. 5.
This 𝑘th-layer subgraph contains only edges between center nodes
and their corresponding 𝑘th-layer neighborhood nodes including
a self-loop. Since here we consider the neighborhood nodes up
to 𝐿th-layer, the 𝑘 is from 1 to 𝐿. Next we utilize graph diffusion
to calculate the multi-hop dependency E𝑘,𝐾 based on Eq. 6 and 𝐾
is the predefined maximum hop of dependency we consider. Af-
terwards, we propagate the initial node representations H0 along
edges in each subgraph following each corresponding adjacency
matrix T𝑘 with the corresponding edge weight from multi-hop
dependency E𝑘,𝐾 to get representations H𝑘 for each layer 𝑘 based
on Eq. 8. We collect representations from each layer and aggregate
them together using two aggregation mechanisms to get the final
representations Z based on Eq. (9). The first aggregation mecha-
nism is to directly sum up the representations of all layers together.
The second aggregation mechanism is to assign learnable weights
and adaptively combine the representations of each layer. The cor-
responding two versions of our model are termed as TDGNN-s and
TDGNN-w, respectively. Ultimately, Z is employed to compute the

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Yu Wang and Tyler Derr

cross-entropy loss for all labeled nodes as:

L = −
∑︁
𝑣𝑖 ∈V𝑙

𝐶∑︁
𝑗=1

Y𝑖 𝑗 log Ẑ𝑖 𝑗 , (10)

where Ẑ is the probability distribution of each node belonging
to each class and is obtained by applying softmax on the final
representation Z. Note that V𝑙 ⊂ V is the set of training nodes
with known label information as previously defined and 𝐶 is the
total number of classes to be predicted.

In summary, our model decouples representation transformation
from propagation [17], which enlarges the receptive fields without
introducing more trainable parameters. Obtaining low dimensional
representations before propagation follows is the idea of predicting
than propagating [13], which makes the training process of TDGNN
computationally efficient. Additionally, the tree decomposition pre-
processing allows more flexible choice of utilizing and combining
different layers to propagate features. The multi-hop dependency
enables feature propagation along paths of various lengths, which
conforms to other recent work [32]. Furthermore, applying learn-
able weight coefficients equips TDGNN with the ability to flexibly
select an effective receptive field based on a specific network and
generate adaptive representations.

3.4 Complexity Analysis
In comparison to vanilla GCN, the additional computational load
mostly comes from the tree decomposition and the graph diffusion.
Since tracking down the corresponding 𝐿-layer subgraphs is equiv-
alent to calculating the difference between corresponding powers
of the normalized adjacency matrices with added self-loops by Eq.
4, which is exactly given by graph diffusion, the time for the tree
decomposition could be saved. The time complexity for performing
graph diffusion process is 𝑂 (𝐾𝑛3) = 𝑂 (𝑛3) due to 𝐾 times matrix
multiplication and can be reduced approximately to 𝑂 (𝑛2.81) if
using the Strassen algorithm [29] or even further to 𝑂 (𝑛2.38) [5].
Moreover, in practice real-world graphs are extremely sparse and
thus sparse matrix multiplication methods [40] could also be used
to further improve computational efficiency. Notably, both of the
tree decomposition and the graph diffusion are preprocessing out-
side of the training, which significantly reduces the computational
load of the whole framework.

For the space complexity, the bottleneck would be saving dif-
fusion matrices Â𝑘 , 𝑘 = 1, 2, ..., 𝐾 , and the adjacency matrices of
each subgraph T𝑘 , 𝑘 = 1, 2, ..., 𝐾 , which leads to 𝑂 (𝐾𝑛2) and con-
stitutes a severe threat for networks of large scale. However, as
we highlighted before and demonstrate in Figure 4, since higher-
layer neighborhoods may have completely different features from
their corresponding center nodes and incorporating their infor-
mation gain little benefits in learning better representation, we
could only consider lower-layer neighborhoods [41] and thus keep
only the first few adjacency matrices. On the other hand, most of
the real-world networks have the small-world property that most
nodes can be reached from every other node by a small number of
hops [18], which confirms and helps justify why we can remove
the higher-layer adjacency matrices. Moreover, we could apply the
same strategy as GraphSAGE [10] where we sample nodes from
center node’s local neighborhood via random walk and propagate

features among these sampled nodes [41]. Since this work mainly
focuses on disentangling neighborhoods to avoid feature smoothing
between different layers and characterizing the multi-hop depen-
dency, the aforementioned is left as one future direction.

4 EXPERIMENTS
In this section, we conduct extensive node classification experi-
ments to evaluate the superiority of our proposed TDGNN model.
We begin by introducing the datasets and experimental setup we
employed. Then, we compare TDGNN with prior baselines and
some state-of-the-art (SOTA) deep GNNs.

4.1 Experimental Settings
4.1.1 Datasets. Weevaluate the performance of our TDGNNmodel
and baseline models with node classification on multiple real-world
datasets. More specifically, we use the three standard citation net-
work datasets Cora, Citeseer, and Pubmed [28] for semi-supervised
node classification [38], where nodes correspond to documents
associated with the bag-of-words as the features and edges corre-
spond to citations. For full-supervised node classification, in ad-
dition to the three citation networks we include three extra web
network datasets, Cornell, Texas, andWisconsion [24], where nodes
and edges represent web pages and hyperlinks, and one actor co-
occurrence network dataset, Actor [24], where nodes and edges
represent actors and their co-occurrence in the same movie. Table 1
contains the basic network statistics for each of these datasets.

4.1.2 Baselines. To evaluate the effectiveness of TDGNN,we choose
the following representative supervised node classification base-
lines including SOTA GNN models.
• MLP [19]: 2-layer multilayer perceptron with dropout and
ReLU non-linearity, which is empirically shown in other works
to perform well on non-homophily network datasets [45].

• GCN [12]: GCN is one of themost popular graph convolutional
models and our proposed model is modified based on it.

• GAT [31]: Graph attention network employs attention mecha-
nism to pay different levels of attention to nodes within the
neighorhood set, and is widely used as a GNN baseline.

• SGC [34]: Simple graph convolution network removes non-
linearities and collapsing weight matrices between consecu-
tive layers, which obtains the comparable accuracy and yields
orders of magnitude speedup over GCN. We note that SGC
collapses the traditional GNN aggregation tree such that the
center node receives the features directly from the flattened
neighborhood while being weighted according to the higher-
order neighborhood information.

• APPNP [13]: APPNP links GCN and PageRank to derive an im-
proved propagation scheme based on personalized PageRank,
which incorporates higher-order neighborhood information
and meanwhile keeps the local information.

• Geom-GCN [24]: Geom-GCN explores to capture long-range
dependencies in non-homophily networks. It uses the geomet-
ric relationships defined in the latent space to build structural
neighorhoods for aggregation. Since Geom-GCN is mainly
designed for non-homophily networks, we only report its per-
formance in full-supervised node classification where three
non-homophily networks are included.

Tree Decomposed Graph Neural Network CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

Table 1: Statistics of datasets.

Networks Nodes Edges Features Classes Train/Val/Test Type

Homophily
Cora 2708 5429 1433 7 140/500/1000 Citation network
Citeseer 3327 4732 3703 6 120/500/1000 Citation network
Pubmed 19717 44338 500 3 60/500/1000 Citation network

Non-
homophily

Cornell 183 295 1703 5 48%/32%/20% Webpage network
Texas 183 309 1703 5 48%/32%/20% Webpage network
Wisconsin 251 499 1703 5 48%/32%/20% Webpage network
Actor 7600 33544 931 5 48%/32%/20% Actor co-occurrence network

Table 2: Summary of semi-supervised classification accuracy (%) ± stdev over Cora, Citeseer, and Pubmed datasets.

Method Cora Citeseer Pubmed Avg. RankFixed Random Fixed Random Fixed Random
GCN 81.50±0.79 (0-2) 79.91±1.64 (0-2) 71.42±0.48 (0-2) 68.78±2.01 (0-2) 79.12±0.46 (0-2) 77.84±2.36 (0-2) 7.17
GAT 83.10±0.40 (0-2) 80.80±1.60 (0-2) 70.80±0.50 (0-2) 68.90±1.70 (0-2) 79.10±0.40 (0-2) 77.80±2.10 (0-2) 7.00
SGC 82.63±0.01 (0-2) 80.18±1.57 (0-2) 72.10±0.14 (0-2) 69.33±1.90 (0-2) 79.12±0.10 (0-2) 76.74±2.84 (0-2) 6.83
APPNP 83.34±0.56 (0-10) 82.26±1.39 (0-10) 72.22±0.50 (0-10) 70.53±1.57 (0-10) 80.14±0.24 (0-10) 79.54±2.23 (0-10) 3.83
DAGNN 84.88±0.49 (0-10) 83.47±1.18 (0-10) 73.39±0.57 (0-9) 70.87±1.44 (0-10) 80.51±0.42 (0-20) 79.52±2.19 (0-20) 2.33
GCNII* 85.57±0.45 (0-64) 82.58±1.68 (0-64) 73.24±0.61 (0-32) 70.04±1.72 (0-10) 80.00±0.48 (0-16) 79.03±1.68 (0-16) 3.83
TDGNN-s 85.35±0.49 (0-4) 83.84±1.45 (0-6) 73.78±0.60 (0-8) 71.27±1.71 (0-8) 80.20±0.33 (0-5) 80.01±1.96 (0-5) 1.33
TDGNN-w 84.42±0.59 (0-4) 83.43±1.35 (0-6) 72.14±0.49 (0-6) 70.32±1.57 (0-6) 80.12±0.44 (0-5) 79.77±2.04 (0-5) 3.67

• DAGNN [17]: Deep adaptive graph neural network first de-
couples the representation transformation from propagation
so that large receptive fields can be applied without suffering
from performance degradation. Then, it utilizes an adaptive
adjustment mechanism, which adaptively balances the infor-
mation from local and global neighborhoods for each node.

• GCNII [3]: GCNII employs residual connection to retain part
of the information from the previous layer and adds an identity
mapping to ensure the non-decreasing performance as the
GNN model goes deeper (i.e., successfully adds more layers).

For baselines that have multiple variants (Geom-GCN, GCNII),
we only choose the best for each dataset and denote it as model*.

4.1.3 Parameter Settings. We implement our proposed TDGNN
and some necessary baselines using Pytorch [23] and Pytorch
Geometric [22], a library for deep learning on graph-structured
data built upon Pytorch. For DAGNN1, and GCNII2, we use the
original code from the authors’ github repository. We aim to pro-
vide a rigorous and fair comparison between different models on
each dataset by tuning hyperparameters for all models individu-
ally. The number of hidden unit is searched from {16, 32, 64, 128},
the dropout rate is searched from {0, 0.5, 0.8}, the weight decay is
searched from [1𝑒−4, 2𝑒−2], the training epochs is searched from
{300, 500, 1000, 1500, 3000, 4000} and the learning rate is set to be
0.01. We find that some baselines even achieve better results than
their original reports. Note that in this work, we do not treat the
random seed as a hyperparamter and therefore, the random seed
fixed in previous models for reproducing results, if any, is reset to
be totally random to remove any potential bias and thus allow for
more generalized comparison. For reproducibility, codes of all of
our models and corresponding hyperparameter configurations for
results in Table 2-3 are publicly available 3.

1https://github.com/vthost/DAGNN
2https://github.com/chennnM/GCNII
3https://github.com/YuWVandy/TDGNN

4.2 Semi-supervised Node Classification
For the semi-supervised node classification task, we apply the fixed
split following [38] and random training/validation/testing split on
Cora, Citeseer, and Pubmed, with 20 nodes per class for training, 500
nodes for validation and 1000 nodes for testing. For each model, we
conduct 100 runs and report the mean classification accuracy with
the standard deviation in both the fixed and random splitting cases.
Table 2 reports the best mean accuracy with the standard deviation
over different data splits where the best model per benchmark is
highlighted in bold and the number in parentheses corresponds to
layers of neighborhoods utilized at which the best performance is
achieved. For example, (0-4) means the corresponding performance
is achieved when we use neighborhood of layers up to 4 and 0-layer
neighborhoods correspond to using center nodes themselves.

We observe that TDGNN-s performs the best in terms of the
average rank through all datasets and across both random and fixed
splits, which suggests the comprehensive superiority of TDGNN-s
to other baselines. Specifically, our TDGNN-s model outperforms
the representative baselines including GCN, GAT, SGC, and APPNP
across all datasets by significant margins. Compared with two re-
cent deep GNN models, DAGNN and GCNII*, TDGNN-s can still
achieve the comparable or even better performance. Especially
when the data split is random, TDGNN-s outperforms all other
models, which demonstrates the strong robustness of TDGNN-s
(in terms of dataset splits). It is also worthwhile to note that our
TDGNNmodel achieves the SOTA performance with relatively shal-
low layers compared with DAGNN and GCNII*. On Cora dataset,
the best performance is achieved when layers are used up to 4 and
6 for our TDGNN-s model, respectively, in fixed and random data
splitting, while DAGNN and GCNII require up to 10 and 64 layers
to achieve the best, which demands heavy computation and thus
are time inefficient. On Citeseer dataset, our model also utilizes
up to the most shallow layers compared with DAGNN and GC-
NII* to achieve the SOTA performance. Surprisingly, the weighted
version of our model, TDGNN-w, has poorer performance than
TDGNN-s while still outperforms most of the baselines. This is

https://github.com/vthost/DAGNN
https://github.com/chennnM/GCNII
https://github.com/YuWVandy/TDGNN

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Yu Wang and Tyler Derr

Table 3: Summary of full-supervised classification accuracy (%) ± stdev over 8 datasets.

Method Cora Cite. Pub. Corn. Tex. Wisc. Act. Avg. Rank
MLP 75.78±1.84 (0) 73.81± 1.74 (0) 86.90±0.37 (0) 80.97±6.33 (0) 81.32± 4.19 (0) 85.38±3.95 (0) 36.60±1.25 (0) 5.57
GCN 86.97±1.32 (0-2) 76.37±1.47 (0-2) 88.19±0.48 (0-2) 58.57±3.57 (0-2) 58.68±4.64 (0-2) 53.14±6.25 (0-2) 28.65±1.38 (0-2) 8.14
GAT 87.30±1.01 (0-2) 75.55±1.32 (0-2) 85.33±0.48 (0-2) 61.89±5.05 (0-2) 58.38±6.63 (0-2) 55.29±4.09 (0-2) 28.45±0.89 (0-2) 8.00
SGC 87.07±1.20 (0-2) 76.01±1.78 (0-2) 85.11±0.52 (0-2) 58.68±3.75 (0-2) 60.43±5.11 (0-2) 53.49±5.13 (0-2) 27.46±1.46 (0-2) 8.57
Geom-GCN* 85.35±1.57 (0-2) 78.02±1.15 (0-2) 89.95±0.47 (N/A) 60.54±3.67 (0-2) 66.76±2.72 (N/A) 64.51±3.66 (N/A) 31.63±1.15 (N/A) 5.86
APPNP 86.76±1.74 (0-10) 77.08±1.56 (0-10) 88.45±0.42 (0-10) 74.59±5.11 (0-10) 74.30±4.74 (0-10) 81.10±2.93 (0-10) 34.36±1.09 (0-10) 5.43
DAGNN 87.26±1.42 (0-10) 76.47±1.54 (0-10) 87.49±0.63 (0-20) 80.97±6.33 (0) 81.32±4.19 (0) 85.38±3.95 (0) 36.60±1.25 (0) 4.71
GCNII* 88.27±1.31 (0-64) 77.06±1.67 (0-64) 90.26±0.41 (0-64) 76.70±5.40 (0-16) 77.08±5.84 (0-32) 80.94±4.94 (0-16) 35.18±1.30 (0-64) 3.71
TDGNN-s 88.26±1.32 (0-4) 76.64±1.54 (0-8) 89.13±0.39 (0-1) 80.97±6.33 (0) 82.95±4.59 (0, 4-5) 85.47±3.88 (0, 4-5) 36.70±1.28 (0, 3-4) 2.86
TDGNN-w 88.01±1.32 (0-5) 76.58±1.40 (0-2) 89.22±0.41 (0-1) 82.92±6.61 (0, 2-6) 83.00±4.50 (0, 2) 85.57±3.78 (0, 3-5) 37.11±0.96 (0, 3-4) 2.14

* We reuse the results reported in [37] for Geom-GCN. ’N/A’ indicate the corresponding layers are not reported in the paper.

because the weight coefficients {𝜃0, 𝜃1, ..., 𝜃𝐿} are only decided by
training nodes and the suitable weights for combining aggregated
features {H0,H1, ...,H𝐿} and getting good predictions on training
and validation nodes might not be suitable for testing nodes, which
inspires future work for a layer aggregationmechanism that enables
node-adaptive layer combination.

4.3 Full-supervised Node Classification
For the full-supervised node classification task, we evaluate our
TDGNN model and existing GNNs using 7 datasets: Cora, Citeseer,
Pubmed, Cornell, Texas, Wisconsin, and Actor. For each dataset,
we use 10 random splits (48%/32%/20% of nodes per class for train-
ing/validation/testing) from [24]4. We conduct 100 runs with each
split evaluated 10 times and report the mean accuracy with the
standard deviation in Table 3. We note that here the numbers in the
parentheses again correspond to layers of neighborhoods utilized
(e.g., (0,3-5) means the corresponding performance is achievedwhen
we use neighborhoods of layers 3 to 5 and 0-layer neighborhoods
corresponding to the center nodes themselves.)

First, we observe from Table 3 that TDGNN-w has the best av-
erage rank across the two types of networks (i.e., homophily and
heterophily) with TDGNN-s ranks second. Next, we observe that
TDGNN-w significantly outperforms the baselines across the het-
erophily networks. However, both variants of TDGNN are slightly
outperformed on the homophily networks in this full-supervised
setting (whereas in most homophily networks under the semi-
supervised setting TDGNN-s performs the best). Thus, to better
understand the inner workings of TDGNN, we next perform a
detailed parameter analysis.

4.4 Parameter Analysis
Here we compare the performance of TDGNN with other baselines
when utilizing neighborhoods in different layers. Furthermore, we
perform a parameter analysis of TDGNN by varying the neighbor-
hood layers (𝐿) and the multi-hop dependencies (𝐾).

First, to demonstrate the strength of the TDGNN-s model in
shallow layers, we visualize the performance of each model using
layers from up to 1 to up to 10 in Figure 4. For the Cora and Citeseer
datasets, our model achieves around 84% and 73% using only the
first 2-layer neighborhoods and the first three-layer neighborhoods,
respectively. Compared to two SOTA deep GNNs where DAGNN
achieves the same level performance using 5 layers and 7 layers,
and GCNII* achieves using 8 layers and at least 32 layers, our model
4Note that although [24] reports that the ratios are 60%/20%/20%, but this is different
from the actual data splits shared on their GitHub [37].

(a) Cora (b) Citeseer

Figure 4: Results of models with different layers.

can leverage less neighborhood information to achieve comparable
performance, which clearly validates the importance of considering
multi-hop dependency. This further to some extent raises the con-
cern over whether we need deep GNNs to incorporate higher-layer
neighborhood information in homophily networks, or if shallow fea-
ture information aggregated according to higher-order multi-hop
dependencies provides sufficient information. Besides, the contin-
ued high-level performance as model depth increases demonstrates
the higher resilience of TDGNN-s against over-smoothing.

Second, we vary the maximum layer of neighborhoods and the
multi-hop dependency to study their effect on the performance
of the proposed two models: TDGNN-s on two representative
homophily networks and TDGNN-w on two representative het-
erophily networks. Both of the maximum layer of the neighbor-
hoods and the length of the multi-hop dependency are selected
from {1, 2, 3, 5, 10} due to the small-world theory that two nodes
will be connected through few series of intermediaries [18]. Figure 5
visualizes the averaged accuracy across 10 runs for various layers
and dependency configurations. For two homophily networks, in-
cluding extra neighborhood layers significantly increase the model
performance for lower-layers and such boosting effect becomes
progressively weaker as more and more higher-layer neighborhood
layers are included, e.g., the performance increases from 79.85 to
84.00 and from 71.50 to 72.85 for Cora and Citeseer when includ-
ing the 2nd-layer neighborhood while only from 84.00 to 85.06 and
from 72.85 to 73.28when including the 3rd-layer. This weaker boost
as the layer number increases is also in line with the decreasing
homophily level as observed in Figure 1. In comparison, for het-
erophily networks, in Figures 5c and 5d we can observe a more
significant need for the decoupling of neighborhood layers since
increasing the receptive field (i.e., increasing the maximum layer
of neighborhoods) is not always advantageous. Similarly including
deeper multi-hop dependencies is not always a clear advantage

Tree Decomposed Graph Neural Network CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

(a) Cora (TDGNN-s) (b) Citeseer (TDGNN-s)

(c) Cornell (TDGNN-w) (d) Texas (TDGNN-w)

Figure 5: Visualizing the effect of varying the maximum
layer neighborhoods and the length of mutli-hop depen-
dency on the performance of TDGNN.

as seen in the homophily networks because lower-layer neigh-
borhoods that have different labels or representations from their
corresponding center nodes may contribute more to their center
nodes’ prediction through longer dependency. We note that these
findings also alignwith our empirical analysis in Figure 1. Therefore,
we believe that the increased performance obtained by TDGNN
over prior work is partially credited to its ability to separate the
concept of graph convolutions in deeper GNNs with higher-layer
neighborhoods into both multi-hop dependencies and decoupled
neighborhood layers, which can allow any deep GNN model to be
more flexibly customized via hyperparameter tuning on a wider
variety of complex networks.

5 RELATEDWORK
Our work is related to previous work attempting to tackle the over-
smoothing problem in GNNs (especially in deeper GNNs), and also
related to prior work attempting to alleviate the challenges faced
when applying GNNs to non-homophily graphs.

5.1 Over-smoothing Problem and Deep GNNs
Over-smoothing derives from stacking multiple propagation layers
resulting in feature information of nodes among different classes
becoming indistinguishable. Previous work [16, 43] have proven
that over-smoothing is a common phenomenon in many GNNs
and smoothness among nodes from the same class is helpful for
node classification. In [6], they discovered that noisy topology
information results in feature over-smoothing and may lead to
node misclassification. The smoothing in GNNs was later classified
into two kinds by the information-to-noise ratio [2]. In this work,
we study the feature smoothing between different layers, show that
such type of smoothing inevitably happens when employing an
iterative propagation framework and that it can be solved by tree
decomposition.

Deep GNNs are related to over-smoothing and have the primary
goal to incorporate higher-layer neighborhood information through
iterative propagation. For example, SGC [34] and S2GC [25] attempt
to capture higher-layer neighborhood information by applying 𝐾 th

power of the graph convolution in a single neural network layer.
APPNP [13] replaces the power of the graph convolution with the
Personalized PageRank [20] and GDC [14] further extends APPNP
by generalizing Personalized PageRank to an arbitrary graph diffu-
sion process. There are also more recent methods, such as GCNII [3]
and DAGNN [17], which we have used as baselines for TDGNN
since they have outperformed previously mentioned deep GNNs.

5.2 GNNs on Heterophily Networks
Heterophily has recently been raised as an important issue since it
breaks the traditional network homophily assumption that is widely
adopted in many GNNs. More specifically, in a heterophily (i.e., non-
homophily) network, the concept that linked nodes are likely from
different classes or have dissimilar features is initially recognized
within the context of GNNs in [24]. Zhu et al. [45] proposes a set
of effective designs that allow GNNs to generalize to challenging
heterophily settings, and Chen et al. [3] leverages initial residual
connection and identity mapping to enable GCN to express a 𝐾 th

order polynomial filter with arbitrary coefficients, which achieves
great progress in both homophily and heterophily networks. In
comparison, our work demonstrates that the poor performance of
GNNs on heterophily networks is caused by feature smoothing
between neighborhoods in different layers. By decomposing the
computational tree of center nodes and increasing the depth of the
GNNs, we can selectively devise suitable layer configurations to
boost the model performance on heterophily network.

6 CONCLUSION
In this paper, we theoretically analyze the feature smoothing of
neighborhoods in different layers and propose a tree decomposi-
tion method that disentangles neighborhoods of different layers
and thus allows more flexible layer configuration. Moreover, our
work provides the first theoretical and empirical analysis that un-
veils the importance of multi-hop dependency in learning better
node representations and discloses its connection with graph dif-
fusion. Based on these insights, we design our Tree Decomposed
GraphNeural Network (TDGNN)model with two variants, TDGNN-
s and TDGNN-w, which simultaneously address the problem of
feature smoothing between different layers and incorporate the
multi-hop dependency. Extensive experiments demonstrate that
TDGNN outperforms representative baselines on a wide range of
real-world datasets across network types (including homophily and
heterophily) and various node classification task settings.

For future work, we plan to devise a node-adaptive layer ag-
gregation mechanism which can optimize the configurations of
representations from different layers in a node specific way. Such
optimization could be realized by applying policy-based reinforce-
ment learning. Furthermore, self-supervised learning (SSL) could
be utilized to pre-train the MLP in our framework, which could en-
hance the capability of our model to embed more useful feature and
topology information from diverse datasets, since SSL has recently
been shown effective on GNNs [11, 33].

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia Yu Wang and Tyler Derr

REFERENCES
[1] Lei Cai and Shuiwang Ji. 2020. A Multi-Scale Approach for Graph Link Prediction.

In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020.

[2] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and Relieving the Over-Smoothing Problem for Graph Neural Networks from the
Topological View. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020.

[3] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020.

[4] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In International Conference on
Learning Representations. https://openreview. net/forum.

[5] Don Coppersmith and Shmuel Winograd. 1987. Matrix multiplication via arith-
metic progressions. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. 1–6.

[6] Zhijie Deng, Yinpeng Dong, and Jun Zhu. 2019. Batch virtual adversarial training
for graph convolutional networks. arXiv preprint arXiv:1902.09192 (2019).

[7] Tyler Derr, Yao Ma, Wenqi Fan, Xiaorui Liu, Charu Aggarwal, and Jiliang Tang.
2020. Epidemic graph convolutional network. In Proceedings of the 13th Interna-
tional Conference on Web Search and Data Mining. 160–168.

[8] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang
Yang, Evgeny Kharlamov, and Jie Tang. 2020. Graph Random Neural Networks
for Semi-Supervised Learning on Graphs. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

[9] William L Hamilton. 2020. Graph representation learning. Synthesis Lectures on
Artifical Intelligence and Machine Learning 14, 3 (2020), 1–159.

[10] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. 1024–1034.

[11] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, SuhangWang, Zitao Liu, and Jiliang
Tang. 2020. Self-supervised learning on graphs: Deep insights and new direction.
arXiv preprint arXiv:2006.10141 (2020).

[12] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR.

[13] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
7th International Conference on Learning Representations, ICLR.

[14] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Dif-
fusion Improves Graph Learning. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.

[15] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence.

[16] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[17] Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. Towards Deeper Graph Neural
Networks. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining.

[18] Stanley Milgram. 1967. The small world problem. Psychology today 2, 1 (1967),
60–67.

[19] Fionn Murtagh. 1991. Multilayer perceptrons for classification and regression.
Neurocomputing 2, 5-6 (1991), 183–197.

[20] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[21] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos.
2007. Netprobe: a fast and scalable system for fraud detection in online auction
networks. In Proceedings of the 16th international conference on World Wide Web.
201–210.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems (NeurIPS) 2019. 8024–8035.

[24] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.
Geom-GCN: Geometric Graph Convolutional Networks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

[25] Carey E. Priebe, Cencheng Shen, Ningyuan Huang, and Tianyi Chen. 2020.
A Simple Spectral Failure Mode for Graph Convolutional Networks. CoRR
abs/2010.13152 (2020). arXiv:2010.13152

[26] Yu Rong, Tingyang Xu, Junzhou Huang, Wenbing Huang, Hong Cheng, Yao Ma,
Yiqi Wang, Tyler Derr, Lingfei Wu, and Tengfei Ma. 2020. Deep graph learning:
Foundations, advances and applications. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 3555–3556.

[27] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, and
John Boaz Lee. 2020. On Proximity and Structural Role-based Embeddings in
Networks: Misconceptions, Techniques, and Applications. ACM Trans. Knowl.
Discov. Data 14, 5 (2020), 63:1–63:37.

[28] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[29] Volker Strassen. 1969. Gaussian elimination is not optimal. Numerische mathe-
matik 13, 4 (1969), 354–356.

[30] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[32] GuangtaoWang, Rex Ying, Jing Huang, and Jure Leskovec. 2020. Direct Multi-hop
Attention based Graph Neural Network. arXiv preprint arXiv:2009.14332 (2020).

[33] Yu Wang, Wei Jin, and Tyler Derr. 2021. Graph Neural Networks: Self-supervised
Learning. In Graph Neural Networks: Foundations, Frontiers, and Applications,
Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao (Eds.). Springer, Singapore,
Chapter 18, 391–419.

[34] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA.

[35] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-
erful are Graph Neural Networks?. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[36] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018.

[37] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra.
2021. Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph
Convolutional Neural Networks. arXiv preprint arXiv:2102.06462 (2021).

[38] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[39] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. 2018. Hierarchical Graph Representation Learning with
Differentiable Pooling. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada.

[40] Raphael Yuster and Uri Zwick. 2005. Fast sparse matrix multiplication. ACM
Transactions On Algorithms (TALG) 1, 1 (2005), 2–13.

[41] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Male-
vich, Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2020. Deep
Graph Neural Networks with Shallow Subgraph Samplers. arXiv preprint
arXiv:2012.01380 (2020).

[42] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neu-
ral Networks. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems (NeurIPS) 2018.

[43] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[44] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed,
and Danai Koutra. 2020. Graph Neural Networks with Heterophily. arXiv preprint
arXiv:2009.13566 (2020).

[45] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations
and Effective Designs. Advances in Neural Information Processing Systems 33
(2020).

https://arxiv.org/abs/2010.13152

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Supervised Node Classification Task
	2.3 Graph Neural Networks

	3 The proposed framework
	3.1 Tree Decomposition
	3.2 Multi-hop dependency
	3.3 Tree Decomposed Graph Neural Network
	3.4 Complexity Analysis

	4 Experiments
	4.1 Experimental Settings
	4.2 Semi-supervised Node Classification
	4.3 Full-supervised Node Classification
	4.4 Parameter Analysis

	5 Related Work
	5.1 Over-smoothing Problem and Deep GNNs
	5.2 GNNs on Heterophily Networks

	6 Conclusion
	References

