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ABSTRACT

Online learning has attracted a large number of partici-
pants and is increasingly becoming very popular. How-
ever, the completion rates for online learning are notori-
ously low. Further, unlike traditional education systems,
teachers, if any, are unable to comprehensively evaluate the
learning gain of each student through the online learning
platform. Hence, we need to have an effective framework
for evaluating students’ performance in online education sys-
tems and to predict their expected outcomes and associated
early failures. To this end, we introduce Deep Online Per-
formance Evaluation (DOPE), which first models the stu-
dent course relations in an online system as a knowledge
graph, then utilizes an advanced graph neural network to
extract course and student embeddings, harnesses a recur-
rent neural network to encode the system’s temporal student
behavioral data, and ultimately predicts a student’s perfor-
mance in a given course. Comprehensive experiments on
six online courses verify the effectiveness of DOPE across
multiple settings against representative baseline methods.
Furthermore, we perform ablation feature analysis on the
student behavioral features to better understand the inner
workings of DOPE. The code and data are available from
https://github.com /hamidkarimi/dopel.
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1. INTRODUCTION

Online learning has higher dropout and failure rates than
traditional education systems. For instance, the completion
rates of Massive Open Online Courses (MOOCs), an exten-
sion of online learning technologies, are low (0.7%-52.1%,
with a median value of 12.6%, reported by [20]). We also
see similar situations in other online courses from univer-
sities such as Open University in the UK and China [19].
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Figure 1: Visual comparison of the learning/intervention
process between online and in-person education systems.

Assessment

Furthermore, since students typically drop out early in the
courses [33], the platform is desired to detect which stu-
dent is likely to drop out (or fail) as early as possible to
intervene and to hopefully prevent these negative outcomes.
Then the question is how we can assess students’ perfor-
mance and detect those who are likely to drop out or fail in
an online course. To answer this question, we first need to
take a closer look at the online learning system and see how
it differs from traditional learning.

As illustrated in Figure [1] (right side), in the traditional
learning setting, instructors can interact with students, as-
sess their performance, and take action to provide interven-
tion if they sense a student is likely to perform poorly in
the class. In online learning systems, however, the students
primarily interact with the online platform, so we face a
setting depicted in the left side of Figure [ In this set-
ting, there is inherently less interaction between students
and instructors. More specifically, due to the high student-
teacher ratio, teachers, if any, in the online learning systems
are unable to comprehensively evaluate the learning gain
of each student. Thus, we seek to develop a methodology
that can harness the interactions of students with an online
platform and accurately predict the course outcome (e.g.,
pass or fail). Such a system could then be used in real-time
throughout the course to identify the students who are pre-
dicted to perform poorly and provide some intervention to
them with the limited resources that are inherent in online
systems.

Given the above discussion, we propose a framework named
Deep Online Performance Evaluation (DOPE) to predict
students’ course performance in online learning. DOPE first
models the student course relations of the online system as a
knowledge graph. To incorporate an aggregated overview of
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the students and courses in the online system, DOPE learns
student and course embeddings from our knowledge graph.
More specifically, we employ a relational graph neural net-
work [34] that can handle the rich attribute information
found in our knowledge graph (e.g., student demographic
data). Then, our proposed approach utilizes a recurrent
neural network (RNN) to encode the temporal student be-
havioral data into some features. More specifically, the stu-
dent behavioral data is coming from student click patterns
extracted and aggregated into weekly snapshots that repre-
sent how they have interacted with the online learning sys-
tem. Finally, the student and course embeddings (extracted
from the knowledge graph) are combined with the encoded
behavioral data extracted for the given student and course
and are fed to a classifier to predict a student’s performance.
In summary, our contributions are as follows.

1. We propose the use of a knowledge graph to model com-
plex online learning environments to allow more rich data
to be extracted as compared to representing the data in
a traditional unstructured way; and

2. Our proposed framework to predict student course out-
comes contains two novel components, namely a relational
graph neural network to extract student and course em-
beddings from the formed knowledge graph and a recur-
rent neural network model for encoding student behav-
ioral data according to their clicks in the online system.

2. PROBLEM STATEMENT

Suppose from the set of courses in an online system we
have a subset of m courses denoted as C = {ci1, c2, ---,
cm}. Furthermore, let there be n students having enrolled
in at least one of the m courses in C, which we denote as
S = {s1,82, -+ ,8n}. For each course c;, we assume there
are some course features that can be represented as the vec-
tor f; € R% with d. being the dimension size after encoding
the course features. Similarly for each of the students s; we
assume there has been some collected demographic informa-
tion that can be represented as the vector d; € R% with ds
being the dimension size after having encoded the student
demographic data. In addition to the demographic data, the
system is assumed to have collected some sequential behav-
ioral data for each student s; enrolled in course c; that we
represent as B;; = [Bj;, B, - ,B?j} where B} € R? rep-
resents an encoding of the behavior for student s; during the
w™ week of course c;, k represents the number of weeks for
which behavioral data was collected, and ¢ is the dimension
of the encoded weekly student behavior. In other words, we
have a tensor of student behavioral data B € R™*™m*kxq,
For each student s;, we represent their performance out-
come in course c; as 0;;, where we assume there can be P
outcomes (denoted by the set p € P).

Now, given the notations listed above, we seek to learn a
model f(.|#) having parameters 6 such that it can predict
the course student outcomes O as follows:

M(C,S,F,D,B,0, f(|0) — 6

where we use M to denote the machine learning (artificial
intelligence) process, B is used to represent the behavioral
(e.g., click) data for a given set of courses C using only the
first k weeks of data, F represents the set of course features
of C, D denotes the set of demographic data for the students
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Figure 2: Visualizing the traditional representation used in
prior supervised learning prediction models as compared to
our knowledge graph representation.
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Figure 3: Visualizing the aggregation process in how both a
student and course embedding are formed from their knowl-
edge graph multi-hop neighborhood.

in S, O represents the performance outcomes of the students
in § and the learned parameters of f(.|0) are given by 0.

3. PROPOSED MODEL

In this section, we explain our proposed model in detail.

3.1 Knowledge Graph Representation

We first model the historical online course data in the form
of a knowledge graph, as shown in Figure[2] Our knowledge
graph formulation in Figure b) offers a richer represen-
tation than a traditional independent naive student course
relation representation shown in Figure a). This is be-
cause through this graph structure we can leverage the re-
lations between students and courses beyond that seen in
Figure a). We let G = {C,S,Xc,Xs,B, A} represent a
knowledge graph G containing the set of m course nodes C,
set of n student nodes S, course features X. € R™*% con-
structed from F, student demographic features X € R™*%s
constructed from D, the behavioral data B representing
complex sequential edge features, and an adjacency tensor
A € R™™*P constructed from the P different student-
course outcome relations where Afj = 1if 055 € O and
0ij = p (with A7, = 0 otherwise). Now, given the knowledge
graph G, we seek to extract student and course embeddings
by using a relational graph neural network.

3.2 Relational Graph Neural Network
Recently, graph neural networks (GNNs) [38, 39] have be-
come increasingly popular due to their ability to utilize deep



learning on graph structure data. One popular class of
GNNs is the graph convolutional networks (GCNs) (5| [27)
8, /7], which are constructed with roots from the classical
CNNs. The general idea of these GCN models is that we
would like to learn a better set of latent features. In the
context of our problem, to better understand and represent
a student, rather than directly using their features alone, we
could use a 1-layer GCN that would incorporate the features
of all the courses that the student has taken. For example,
in Figure a), the 1-hop neighbors would be utilized in a
1-layer GCN model taking into consideration the course cs
that they passed and c; that they failed. Then, it is natural
to see in Figure a) that using a 2-layer GCN would further-
more incorporate the 2-hop neighbors which would include
information from all the classmates of s; for each of the two
courses they have taken, and thus providing further context
into learning a more comprehensive embedding for student
si. We specifically harness the ability of a relational graph
convolutional network [34]. Next we will provide the details
on how the first layer (or equivalently a 1- layer) GCN is able
to construct learned representations hg} and he} ; for the stu-
dent s; and course ¢;, respectively, from the 1n1t1al student
features Xg, course features X, and adjacency tensor A in
our knowledge graph representation.

—First Layer Embeddings. First, we recall that connec-
tions between students and courses are stored in the tensor
A where A7, = 1if 0;; € O and 0;; = p (with A}; = 0 oth-
erwise). Thus, we define for a student s; their set of courses
for which they had outcome p as NP(s;). Similarly, we de-
fine for a course c; their set of students that received the
outcome p as NP(c;). Now, given these new notations we
can define the first layer representations hs} and h for the
student s; and course c;, respectively, as follows:

> WiXey) (1)

pEP c; ENT(s4)
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where o is an element—wwe non—hnear activation function (e.g.,
ReLU(:) = max(0, -) [13]), Xs[;) denotes the student features for
Si, XC[J’] denotes the course features for cj, W;ezf is used to
transform the self features from the original features, and Wé
is used for transforming the features that are linked through the
relation (i.e., course outcome type) p for the first layer.

—Final Student Embeddings. If we assume having L layers in
our GCN model, we can then first define the last layer where we

will obtain the student embedding z; = hS for s; as follows:
- L—1
zf = a(wselfhsz + Z |,/\/'P( )| Z Wll;hcj >
pEP 5 c; NP (sy)

where hsé represents the representation of student s; at layer [ of
the GCN. Note that if we were to use a 2-layer GCN (i.e., L = 2)

then hsz.L71 = hs% would be coming from Eq. and similarly
hC]L*1 = hcjl- from Eq. .

—Final Course Embeddings. If we assume having L layers in
our GCN model, we can then first define the last layer where we
will obtain the course embedding zQ = hcf for ¢; as follows:
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Figure 4: Visualizing the entire DOPE model consisting of
both the relational graph neural network and recurrent neu-
ral network components.

where hcé is the embedding of student c¢; at layer I of the GCN.
Next, we will discuss how DOPE uses an RNN to encode a stu-
dent’s sequential behavior data associated with a given course.

3.3 Encoding Student Behavioral Data

In this part, we discuss how to encode the sequential edge fea-
tures i.e., behavioural student data. To recall, when a student
s; is currently enrolled in a course cj, by the kth week we will
have the features Bj; [Bzy’ ”,--- ,ij}, To better repre-
sent the behavioral data, we utilize a Long-Short Term Memory
(LSTM) |[16], which is an effective RNN variant that has been
designed to extract temporal features from sequential data e.g.,
videos [25] , speech |14} 25|, and text |24, [23|. Furthermore, it
has shown great abilities to capture temporal online user behav-
iors [26]. We fix the length of the behavior feature sequence for
all students to be k (e.g., 10 weeks). Then for a given behavioral
sequential data B;;, at each week ¢ € [1, k], an LSTM unit takes
the t-th week’s click feature vector Bﬁj as the input and uses

LSTM formulation 16| to produce the output behavioral vector

hg. The final output of the LSTM is h’g IS Re’ (i-e., output of
last LSTM unit) when given the sequence B;j; as input. Then,
we set the encoded behavior of student s; for course c; as the e’
dimensional vector z’i’j = h’;.

3.4 Final Course Performance Classifier

Here we combine student and course embeddings from the re-
lational graph convolutional as well as encoded behavioral data
and feed into a classifier. This can be seen in Figure El Given
the student embedding z; for student s;, course embedding z§ for

course ¢;, encoded student behavior of s; in the course c; as z?j
we form the final feature representation as follows:
zi; = 7 ||25||2};
where || denotes concatenation and we concatenate the three com-
ponents together into a single (e® + e + €b) dimensional repre-
sentation. For training DOPE, we use supervised learning such
that labels are the outcome performances from the historical data
0;; € O and matched with the training student and course pair
(si,c;). More specifically, we construct a minibatch set M that
contains triplets of the form (s;,c;,T) where T' = o;; (i.e., the
course outcome type) and we assume the outcome type set T
where |T| = p since there are p course outcome types. The ob-
jective is then formalized in the following:
MLG,, . .

r - Z log exp (07 ~“zij) 3)

IM] > exp (0¥{LGZU)

(siscj,T=0;5)EM

T'eT
+ )\Reg(ORGCN gLSTM QMLG)
K b
where the classifier first maps z;; to a p dimensional vector through
the parameters §MLG (since we have p different outcomes, i.e.,



Table 1: The description of the dataset.

Name | Train Periods | Test Periods | #Students
SS1 2013J 2014J 735
5SS 2013B, 2013J 2014B, 2014J 6622
SS3 2013J, 2014B 2014J 2366
ST 2013B, 2013J 2014B, 2014J 5745
ST» 2013J, 2014B 2014J 2685
STs 2013B, 2013J 2014B, 2014J 7092

link labels in the knowledge graph) and then utilizes the softmax
function to get the outcome probabilities.

4. EXPERIMENTS

In this section, we conduct some experiments to verify the working
of our proposed method.

4.1 Dataset and Experimental Settings

Online education platforms utilize virtual learning environments
(VLESs) to collect records about all students’ interactions and pro-
vide the opportunity for analyzing students’ learning behavior.
In this study, we use the data of The Open University Learn-
ing Analytics Dataset (OULAD) [29|, which contains 22 open
university courses for years 2013 and 2014 and 32,593 students.
The dataset includes student demographic information, student
assessment results, and daily interactions with the university’s
VLEs (10,655,280 entries). For each year, courses are offered in
two distinct modules denoted as B and J (essentially they are
similar to ‘semester’ in the conventional education system) where
each module takes around 35 to 40 weeks long. The outcome
of a course for a student can have four different categories in-
cluding Distinction, Pass, Fail, and Withdrawn. We use OULAD
and select three social science courses (i.e., SS1, SS2, and SS3)
and three Science, Technology, Engineering, and Mathematics
(STEM) courses (i.e., ST1, ST2, and ST3) as demonstrated in
Table [0

To represent the behavioral data, we count the different number
of weekly clicks a student makes e.g., accessing resources, web-
page click, forum click, quiz attempt, and so on. The size of each
weekly behavioral vector is 20. Further, course attributes include
two one-hot encoding vectors, one for representing a course among
6 courses, and the other one for holding either the course is social
science or STEM. Train and test periods are shown in Table
We use 10% of the training data as a validation set to tune the
hyper-parameters. The implementation is done using PyTorch
package |30]. Each simulation is run for 200 epochs with a learn-
ing rate set to 0.001 and a decaying rate of 0.99 every 100 steps.
As for the evaluation metric, we use weighted F1 score which is
the harmonic mean of recall and precision.

4.2 Baseline Methods

We compare the performance of DOPE with the following baseline
methods.

e SVM. In this baseline method, we concatenate the course at-
tributes and students’ demographic features as well as weekly
click data (i.e., behavioral data) into a single vector and feed it
to a support vector machine with radial basis function kernel.

e LR. This is similar to SVM except we use logistic regression for
classification. The reason for including this baseline is to mea-
sure the online course performance prediction problem using a
simple classification method without any kernel or non-linearity.

o DOPEgcN. Thisis a variation of DOPE where instead of mod-
eling behavioral data with an LSTM, we use a fully connected
network. The reason for including this method is to evaluate the
effectiveness of the way we model sequential behavioral data.

We compare DOPE with the baseline methods for the different
numbers of weekly click data i.e., 5, 10, 15, and 20 weeks. By
doing so, we can measure how effective DOPE is in the early
prediction of a student’s course performance prediction. We note
that 20 weeks is almost half of a course period when there is still
adequate time for intervention in the case of prediction as failure.

4.3 Binary Classification

As mentioned begore, our dataset includes 4 distinct labels for a
student’s performance in a course, namely Distinction, Pass, Fail,
and Withdrawn. In this section, we merge Distinction and Pass
into a single class “Pass” and Fail and Withdrawn into a single
class “Fail” and then perform a binary classification. Figure
illustrates the experimental results for all courses. We make the
following observations based on the results presented in Figure

e In general, the more weekly click data is introduced, the bet-
ter we can predict the students’ outcomes. DOPE enjoys more
of such performance increase as compared to other methods.
In particular, as early as 20 weeks from the start of a course
(i.e., almost in the middle of a course duration), it can predict
student’s outcomes with very high performance. This allows
teachers or online course administration to take actionable and
interventive measures to help students with poor performance.

e DOPE achieves a better performance than DOPEpcn. This
shows the fact the LSTM component as a machinery extracting
temporal features from click behaviors is necessary and affects
the model’s predictive power.

e DOPE is shown to be effective for all courses as we can observe
it achieves an F1 score of more than 0.8 across all courses when
20 weeks of click data are considered.

4.4 4-class Classification

In this part, we compare the performance of DOPE with baseline
methods for a 4-class classification setting whose experimental
results are demonstrated in Figure [f] We make the following
observations based on the results in Figure @

e The observations we made for binary classification hold for 4-
class classifications as well. In particular, DOPE still outper-
forms baseline approaches, more weekly click data is helpful in
course outcome prediction, and the LSTM can effectively han-
dle sequential that than simple concatenation followed by a fully
connected network model (i.e., DOPEpcN).

e Since more classes are considered, compared to binary classifi-
cation, the 4-class classification is a harder task. In particular,
now Withdrawn is considered as a separate class, which might
be “conceptually” hard for a model to discern from Fail.

4.5 Behavioral Feature Analysis

Since behavioral data (i.e., click data) plays an essential role in de-
termining a student’s performance, we conduct a feature analysis
experiment investigating the importance of each behavior type.
A similar feature analysis has been performed to discover great
insights into human behaviors |21]. To this end, we follow an ab-
lation feature analysis where at each time we include one feature
type and suppress the rest (setting their values to zero) and then
acquire the F1 score from the model. We do this experiment for
the binary classification and the case when 20 weeks of click data
is included. Figure |Z| demonstrates the results and we make the
following observations accordingly.

e For all courses, feature type homepage is associated with a high
F1 score. This seems reasonable since most of the click activity
occurs on the main page of the platform interface.

e Interestingly, clicks and activities in forums have an influential
role in predicting fail or pass of a student in a course. This is in
line with previous [15}|31] where they showed that MOOC forum
activities correlate with a student’s academic performance.
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Figure 5: Comparison results for binary classification using four different amounts of included weekly click data.
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Figure 6: Comparison results for 4-class classification using four different amounts of included weekly click data.

e Unique behavioral importance profile of a course can aid pol-
icymakers, administrators and even course interface designers
to prepare the course materials in a more informed way. For
instance, we can observe that attribute wiki is playing an im-
portant role in performance prediction of ST> while its effect
is negligible for other courses. This can be indicative of ma-
terials of the course ST> to be requiring more wiki access and
consequently, the content can be changed accordingly.

Based on the observations above, we can conclude that DOPE
encodes behavioral data in an intuitive manner that conforms to
previous studies’ findings as well.

4.6 Inter-course Outcome Evaluations

Naturally, each course has its own model. However, in this sec-
tion, we intend to measure inter-course performance evaluation
where we train DOPE on one course and test it on another one.
Table [2] shows the results. Again, the models are trained for the
binary classification and they incorporate 20 weeks of the click
data. Also, for the reference, we have included intra-course per-
formance (i.e., the same course for training and test) shown in the
diagonal entries of Tableg Expectedly, when the training course
and the test course are the same (i.e., intra-course setting), the

performance is higher. This seems reasonable since clicking pat-
terns are expected for the course in the past (i.e., a part of the
training data) and the one in the future (i.e., testing data), and
the model can more easily extract such patterns. Although the
results for inter-course results are not as good as the ones for
intra-course, we still see that the DOPE can effectively achieve
reasonable performance. This indicates that the proposed model
DOPE can detect salient click and demographic patterns that are
transferable from a course to another.

Table 2: Inter-course performance evaluation

Test course

2 581 [ S8, [ SSs | ST1 [ ST | STs
£ 55 [ 083 0.78 [0.77 | 071 | 0.8 [ 0.75
© ~55; | 0.63 [ 0.80 | 0.58 | 0.66 | 0.53 | 0.66
& SS9 [ 064 [ 051 | 0.80 | 0.45 | 0.72 | 0.49
2 TSTi [ 060 [ 0.79 [ 071 | 0.82 | 047 | 041
& ST, [ 0.74 [ 0.60 | 0.56 | 0.62 [ 0.88 | 0.49

STs | 0.79 [ 0.76 | 0.75 | 0.70 | 0.77 | 0.86
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Figure 7: Behavioral feature analysis on different courses.

5. RELATED WORK

In the following, we highlight some of the works focusing on stu-
dent dropout and performance prediction. In , they extracted
27 interpretive features and used logistic regression to predict
student persistence prediction. The authors of used proba-
bilistic soft logic to model student survival by constructing prob-
abilistic soft logic rules and associating them. Different from [32]
(which mainly considered forum features), in they did not
consider forum data, but instead only made use of clickstream
data to train their prediction model. More specifically, they used
principal component analysis paired with a linear support
vector machine for each week. It was in [12] that a more
comprehensive approach was taken that used standard classifi-
cation trees and adaptive boosted trees to construct their
two-stage Friedman and Nemenyi procedure for dropout predic-
tion by processing different features such as clickstream-based,
forum-based, and assignment-based features. More recently, in
, the authors studied a hybrid method for dropout prediction
by combining both a decision tree and extreme learning ma-
chine . In addition to these traditional machine learning meth-
ods, some researchers have tried to use different deep learning
models for dropout prediction of online courses. In El an LSTM
was used to deal with the features extracted from students’ in-
teraction with lecture videos, forums, quizzes, and problems. [36)
explored the potential benefits of employing a fully connected
feed-forward neural network for dropout prediction. Different
from previous work, proposed a context-aware feature inter-
action network to incorporate context information of both par-
ticipants and courses. More specifically, they used an attention-
based mechanism for learning activity features. The most similar
method to ours is found in where they sought to conduct per-
formance evaluations on students using a graph neural network
(GNN), but there are primary differences: (1) they constructed
separate small graphs of courses for each student while DOPE
constructs a single knowledge graph of historical student course
relations; (2) their graph neural network was used to obtain a
graph classification for a given student based on that student’s
specific course graph, while our method uses the relational graph
neural network to learn embeddings for both students and courses

elluminate —

Behavior type

(e)

The models are binary classification using 20 weeks
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elluminate G
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of click data.

from a single large knowledge graph; and (3) DOPE furthermore
utilizes an LSTM model to capture a student’s rich sequential
behavioral data beyond just using static fixed student features.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a model for course performance predic-
tion we call it Deep Online Performance Evaluation (DOPE). Our
method first represents the online learning system as a knowledge
graph, such that we then learn student and course embeddings
from historical data using a relational graph neural network. Si-
multaneously, DOPE utilizes an LSTM for harnessing the student
behavior data into a condensed encoding, as the data has a nat-
ural inherent sequential form. We tested the proposed model on
six courses from the OULAD dataset where the results showed
the feasibility of DOPE and that it can predict at-risk students
of on-going courses. We also investigated the usefulness of the
different types of behavioral features and observed that DOPE
encodes the data in an intuitive manner.

In the future, we will first analyze the imbalance and sparse is-
sues of the dataset. One possible way to alleviate the sparsity
would be through a network alignment @ of multiple MOOC
datasets represented as knowledge graphs or connecting student
behavior data from social media for better predictions in online
education . Also, we will investigate more advanced ways of
handling behavioral data. For example, investigating better ways
to use “subpage” clicks beyond a simple aggregation that ignores
separating the multiple different “subpages”. In addition, we plan
to apply our framework to the traditional education system aim-
ing at identifying similarities and differences between online and
traditional course performance prediction, since we believe this
to be highly important in improving online learning systems.
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