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ABSTRACT
Recently, recommender systems that aim to suggest personalized
lists of items for users to interact with online have drawn a lot
of attention. In fact, many of these state-of-the-art techniques
have been deep learning based. Recent studies have shown that
these deep learning models (in particular for recommendation
systems) are vulnerable to attacks, such as data poisoning, which
generates users to promote a selected set of items. However, more
recently, defense strategies have been developed to detect these
generated users with fake profiles. Thus, advanced injection attacks
of creating more ‘realistic’ user profiles to promote a set of items
is still a key challenge in the domain of deep learning based
recommender systems. In this work, we present our framework
CopyAttack, which is a reinforcement learning based black-box
attack method that harnesses real users from a source domain
by copying their profiles into the target domain with the goal of
promoting a subset of items. CopyAttack is constructed to both
efficiently and effectively learn policy gradient networks that first
select, and then further refine/craft, user profiles from the source
domain to ultimately copy into the target domain. CopyAttack’s
goal is to maximize the hit ratio of the targeted items in the
Top-k recommendation list of the users in the target domain. We
have conducted experiments on two real-world datasets and have
empirically verified the effectiveness of our proposed framework
and furthermore performed a thorough model analysis.

KEYWORDS
Recommender Systems; Cross-Domain; Data Poisoning Attacks,
Black-box Attacks
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1 INTRODUCTION
Recommender systems aim to suggest a personalized list of items
that users are likely to interact with (e.g., click or purchase) in
online worlds, especially in many user-oriented online services
such as E-commerce (e.g., Amazon and Taobao), and Social Media
sites (e.g., Facebook and Twitter). Recent years have witnessed
increasing efforts in adopting deep learning techniques such as
RNNs and GNNs for recommendations [19]. These deep learning
based recommender systems have achieved the state-of-the-art
performance. However, it is well known that deep neural networks
(DNNs) are highly vulnerable to adversarial attacks [7, 10, 29]
where adversaries tend to manipulate the data for degrading the
prediction performance. Recent studies have demonstrated that
the DNNs based recommender systems are also vulnerable to
adversarial attacks [6, 23] where adversaries intend to manipulate
users’ decisions for their desires. One of the most popular ways to
attack recommender systems is data poisoning attacks (also called
as shilling attacks) [5, 6, 9, 16, 23]. In these attacks, adversaries
generate users in a recommender system with well-designed
profiles to promote a carefully chosen subset of items [6, 15, 16].
However, recent defense studies [2, 5, 22, 26] have demonstrated
that these fake profile users are easy to be detected since they
present very different patterns from real profiles. Thus, how to
inject users with profiles similar to real ones is still a key challenge
to attack the DNNs based recommender systems.

Some real-world recommendation platforms have similar func-
tionalities and as a consequence, they have a lot of information in
common. For example, movie recommendation platforms IMDb and
Netflix share a lot of movies and e-commerce sites Amazon and eBay
have millions of products in common. Moreover, users from these
platforms with similar functionalities also share similar behavior
patterns/preferences. In fact, these observations have encouraged a
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Figure 1: Two domains share some movies. The profile of
user uBn in the source domain B is copied into the target
domain A for attacking the target item vj .

large body of work targeted on leveraging information from one
platform to help recommendations in the other platform that is well
known as cross-domain recommendations [3]. Recall that the key
obstacle to attack recommender systems is how to generate users
with profiles close to real ones. To tackle this challenge, in this work,
we change our perspective – instead of generating users with fake
profiles, we propose to copy cross-domain users with real profiles.
One illustrative example is shown in Figure 1, where we have a
target domainA and a source domain B for movie recommendations.
These two domains share a set of movies. To attack/promote the
targeted item vj in target domain A, user uBn ’s profile

{
vj−1,vj

}
in

the source domain B can be copied into the target domain A as a
new user uAm+1, such that the movie vj is attacked.

In this paper, we aim to attack black-box recommendations
via copying cross-domain user profiles. The copied user profiles
are naturally real. However, how to select user profiles in the
source domain under the black-box setting faces tremendous
challenges since in the black-box setting, we only have the query
access to the target model and each query feedback consists
of Top-k recommended items for specific users. Moreover, the
majority of existing attack methods have been designed under
the white-box setting, in which the attacker requires to have full
knowledge of the target model (e.g., model design and parameters)
and dataset [6, 16, 20]. Existing white-box approaches such as
these based on Projected Gradient Method and Stochastic Gradient
Langevin Dynamics [6, 16] are not applicable to our problem.
Therefore, we propose a reinforcement learning (RL) based attack
method that learns to choose user profiles in the source domain B
with only query feedback from the target recommender systems.
Our major contributions are summarized as follows:

• We introduce a novel strategy to obtain real user profiles
by copying cross-domain user profiles to attack the target
recommender systems;

• We propose a novel framework (CopyAttack) to attack rec-
ommendations under the black-box setting via reinforcement
learning, which can effectively and efficiently select cross-
domain user profiles to perform effective attacks; and

• We conduct comprehensive experiments on two real-world
datasets to demonstrate the effectiveness of the proposed
attacking framework.

The remainder of this paper is organized as follows. In Section 3
we introduce the problem definition. Thereafter we introduce the
proposed framework in Section 4. In Section 5, we conduct experi-
ments on two real-world datasets to illustrate the effectiveness of
the proposed method. In Section 2, we review related work. Finally,
we conclude our work with future directions in Section 6.

2 RELATEDWORK
Recommender systems aim to recommend potential items to
specific users. Attacking recommender systems can influence
users’ beliefs and decisions with malicious purposes [5, 6, 15].
Some methods are proposed to study this directions. More specifi-
cally, [16] apply Projected GradientMethod and Stochastic Gradient
Langevin Dynamics (SGLD) [20] to optimize data poisoning attack
model with full knowledge of factorization-based collaborative
filtering. [6] introduces two steps adversarial framework for
recommendations, in which they first generate fake users through
Generative Adversarial Networks (GAN), and then apply Projected
Gradient Method for further crafting fake user profiles with a
suitable adversarial intent. [25] proposed hybrid attacks, which
elaborate fake user profiles via fusing ratings information and
social relationships for social recommendations. However, many
of these data position methods fundamentally rely on the white-
box model, in which the attacker requires the adversary to have
full knowledge of the target model and dataset [16]. That is, they
crucially require direct access to the target model, as well as the
dataset in recommender systems. For recommender systems as
real-world application scenarios, expecting these kinds of complete
access is not realistic. Therefore, it is desired to study black-box
attacks in recommender system, where the attackers do not have
full knowledge of the target model. Therefore, we propose a novel
framework to attack under black-box setting to fill this gap.

3 PROBLEM STATEMENT
Let a target recommender system A be defined as having a set
of users UA =

{
uA1 ,u

A
2 , ...,u

A
nA

}
and a set of items VA ={

v1,v2, ...,vmA
}
, where nA is the number of users and mA is

the number of items in A. In addition, user-item interactions are
represented as the matrix YA ∈ RnA×mA

, where an interaction yAij
indicates that user uAi interacted with itemvj (e.g., clicked/bought),
and 0 otherwise. Furthermore, we define the set of items a user uAi
interacts with in YA (i.e., their user profile) as:

PAui =
{
v1 → ...→ vj → ...→ vl

}
where → denotes the sequential order of the l items uAi has



interacted with (and the length l can vary between users). We
then denote the set of all user profiles in the target domain A as
PA
U =

{
PAu1 , ..., P

A
ui , ..., P

A
unA

}
.

We define the source recommender system B similarly, having
the set of users UB , set of items VB , interaction matrix YB ∈
Rn

B×mB
, and set of user profiles PB

U . Note that the source domain
B is selected such that there are overlapping items between the
target domain A and source domain B. In other words, there exists
a set of items V = VA ∩VB , where |V| , ∅ and the overlap (i.e.,
size of V) is assumed to be sufficiently large. Thus, we then define
an item profile PAvj forvj ∈ V , which is the set of users fromAwho
have interacted (e.g., purchased/clicked) with vj in YA as follows:

PAvj =
{
uA1 → ...→ uAi → ...→ uAo

}
where o is the number of user’s in the items profile (that can differ
from item to item). Let PA

V =
{
Pv1 , ..., Pvj , ..., PvmA

}
denote the

set of item profiles in target domain A.
Now, given the notations of the target and source recommender

systems A and B, respectively, we formally define the goal of the
target recommender system A. Overall, the objective of A (which
we denote here at Rec(·, ·)) is to predict whether user uAi likes (i.e.,
will interact with) an item vj as yAij = Rec(PAui , P

A
vj ). Thus, without

loss of generality, the target recommender system task is to predict
a list of Top-k ranked potential items for each user. More formally,
this recommendation is as follows:

yAi,>k =
{
v[1],v[2], ...,v[k ]

}
= Rec(PAui ,P

A
V )

where yAi,>k =
{
v[1],v[2], ...,v[k ]

}
denotes the Top-k candidate

items for user uAi . For completeness, we note that these candidate
items in yAi,>k are ranked by Rec(·, ·), where user uAi is more likely
to click/purchase item v[i] than v[i+1].

Finally, we define the problem of a black-box injection attack to
promote a target item v∗ ∈ V by copying a set of usersUB→A =

{uBi }
△
i=1 from the source domain to the target domain, where △ is

the budget given to the attacker (in terms of the number of profiles
to copy). Note that these results in the target domain having the set
of polluted usersUA′

= UA ∪UB→A and thus also polluting the
interaction matrix YA. More precisely, the pollution of YA is due to
the fact that introducing the copied users brings their interactions
with the set of itemsV and hence disrupts the relations between
users and items in A. Furthermore, to be more specific, we define
the promotion of a target item v∗ as having this item appear in the
Top-k recommendation list for users inUA that previously (before
injecting the copied usersUB→A and their associated interactions)
did not have v∗ in their Top-k recommendation list.

4 THE PROPOSED FRAMEWORK
In this section, we will first give an overview of the proposed
framework, then provide details for each of the frameworks
components, and finally discuss how to learn the model parameters.

4.1 An Overview of the Proposed Framework
To perform attacking in recommender systems in the black-
box setting, traditional gradient-based methods [6, 16] are not

applicable. Thus, we propose a reinforcement learning (RL) based
attack method, CopyAttack, to learn the strategy of copying
cross-domain user profiles. This is because reinforcement learning
provides a natural way to interact with a black-box recommender
system. The architecture of CopyAttack is shown in Figure 2, which
consists of three major components: user profile selection, user
profile crafting, and injection attack and queries.

The first component is to perform user profile selection for
specific target item attack, which is proposed to select user profiles
from PB

U (i.e., user profiles from the source domain B). This
can be seen in the left part of Figure 2. However, modeling this
process of selection with reinforcement learning technique is rather
challenging under limited resources (i.e., number of queries (or
interactions) allowed to the target recommender system), since
a huge number of user profiles (discrete action space) in source
domain B might lead to inefficiency and ineffectiveness at the same
time. Moreover, not all the user profiles are useful to help attack the
specific target item in the target recommender system. To address
these challenges, we propose to adopt hierarchical-structure policy
gradient [1, 4, 18, 21] with masking mechanism to efficiently learn
the strategy of effectively selecting cross-domain user profiles, so
as to maximize long-run rewards.

Next, once having selected a user profile from the first compo-
nent, the second component is used for profile crafting. Here profile
crafting aims to further modify the user profile by considering the
reduction of attack cost and can be seen in the center part of Figure 2.
We note that users can have user profiles consisting of varying
lengths (i.e., number of items they have interacted with). Thus, it
could be the case that not all the interactions that the user has given
towards items in their user profile are helpful. Furthermore, too long
of a user profile might include some noise as well as increase the
attack cost (i.e., number of interactions the copied user would need
to perform in the target domain). Hence, we introduce a second step
policy gradient network to craft the the user profiles by considering
this attacking cost issue. More specifically, this second step policy
gradient network will decide what percentage of the user profile is
kept around the target item v∗.

Lastly, the third component’s first objective is to attack the target
recommender system by copying the crafted cross-domain user
profiles (i.e., those coming from the source domain). After having
copied the crafted cross-domain user profile, queries on the target
recommender system are performed to obtain some feedback in
the form of Top-k recommendations. This feedback is then used to
form a reward for optimizing the whole framework (i.e., updating
the policy gradient networks of the first and second components).
This component can be seen in the right part of Figure 2.

Next, we will discuss an overview of the attacking environment
of our black-box reinforcement learning based attacking method.

4.2 Attacking Environment Overview
The attacking black-box framework can be modeled as Markov
Decision Process (MDP) [11]. The definition of the MDP contains
the state space S , action set A, transition probability P , reward R,
and discount factor γ (i.e., (S,A, P ,R,γ ) ) that are defined as follows:

State S . A state st consists of all the intermediate injected user
profiles at t .
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Action A. The action has two components and is defined as
A =

{
at = (aut ,alt )

}
. More specifically, the attacker is allowed to

first select a user aut = uBi from the cross-domain (i.e., source
domain) system B at state t . Then, the attacker can modify the
original profile PBui of u

B
i to craft a profile of perhaps shorter length

resulting in alt = P̂Bui . Note that this crafted user profile would be
the one ultimately injected into the target recommender system.

Transition probability P . Transition probability p(st+1 |st ,at )
defines the probability of state transition from the current st to the
next state st+1 when the attacker takes action at .

Reward R. The goal of the attacker is to attack a target item v∗
in the target recommender system Rec(·, ·) with their desires (such
as promotion/demotion of that target item). In this work, we focus
on the promotion attack, where the attacker seeks to have the target
items recommended to as many users as possible. A natural way to
define the reward for the RL based method is on the basis of ranking
evaluation measures. We note that this type of reward function
based on ranking evaluation is quite general and could be used
for either a promotion or demotion attack. Thus, for the reward
function based on ranking, we assign a positive reward for action at
when the target itemv∗ belongs to the Top-K recommended list for
users uAi∗ ∈ UA

∗ ⊂ UA. More specifically, the set of usersUA
∗ is a

set of pretend users that the attacker had already established in the
target domain before the injection attacks (as seen in Figure 2). We
note that these pretend users solely exist in the target recommender

system so that the attacker can use them as a proxy for determining
how effective their copied user profiles are are at promoting the
target items to all users in UA. We use the Hit Ratio (HR@K) as
the ranking evaluation in our reward function r (st ,at ) for a given
state st and action at , which we define as follows:

r (st ,at ) =
1

|UA
∗ |

|UA
∗ |∑

i=1
HR(uAi∗,v∗,k) (1)

HR(uAi∗,v∗,k) =
{
1, v∗ ∈ yu∗,>k ,

0, v∗ < yu∗,>k

where HR(uAi∗,v∗,k) returns the hit ratio for a targeted item v∗ in
the Top-k listing of the attackers pretend user uAi∗ (i.e., whether v∗
is in the set yAui∗,>k or not) and the reward is averaged over the hit
ratio of all the pretend users inUA

∗ .
Terminal. The attacking process will stop when the number of

actions reaches the budget △. In addition, in the case when fewer
user profiles are enough to successfully satisfies the promotion task,
the process stops.

4.3 User Profile Selection via
Hierarchical-structure Policy Gradient

User profile selection aims to learn the strategy of selecting cross-
domain user profiles. More specifically, it seeks to discover the set
of users UB→A ⊂ UB that we can then inject their user profiles



into the targeted recommender system’s set of usersUA to achieve
the goal of promoting a set of items. Here, the main challenges are
how to handle a large-scale discrete action space (i.e., set of all user
profiles) as well as achieve satisfied results under limited resources
to interact with the target (black-box) recommender system A.
Most existing RL techniques cannot handle such a large discrete
action space problem as the time complexity of making a decision
is linear to the size of action space [1, 4, 8, 27, 28]. To address these
challenges, we propose to utilize a hierarchical-structure policy
gradient network with a masking mechanism to model the process
of selecting a user profile (as shown in the left part in Figure 2).
More specifically, we construct a hierarchical clustering tree over
cross-domain user profiles, where each leaf node is represented as
a user profile and each non-leaf node is a policy network. Selecting
a user profile in this hierarchical clustering tree is to seek a path
from the root to a certain leaf of the tree.

4.3.1 Hierarchical Clustering Tree over Cross-domain User Profiles.
In the hierarchical clustering tree, each leaf node is represented as a
cross-domain user profile, while each non-leaf node is a policy
network. However, the question remains how to construct the
clustering tree. Hence, we propose to employ a top-down divisive
approach that will repeatedly divide each cluster into small sub-
clusters where leaf nodes under the same non-leaf node in the
clustering tree should be more similar to each other than leaf nodes
coming from another non-leaf node. We note that this process starts
with the entire set of nodes at the root of the clustering tree.

When constructing our hierarchical clustering tree we further
add the constraint that it should be balanced to ensure the proper
speedup (as an unbalanced clustering tree in the worst case could
result in a linked list of policy networks on the order of the number
of users). Hence, we use K-mean clustering method [17] and further
modify it such that it forms clusters of equal size (off by at most
a single user in size). To achieve this, at each non-leaf node when
constructing the tree (top down), we first apply the traditional K-
mean clustering on that current set of users to obtain the set of c
centroids. Note that the number of cluster centers (i.e., centroids)
is set to as the same number of child nodes in the hierarchical
clustering tree. Then, we reassign the users to these c centroids one
at a time based on their Euclidean distance to ensure we have a
balanced set of clusters (in terms of their size).

When constructing the clustering tree, one major consideration
is how to balance the number of children per node against the height
of the tree. To better understand this relationship between depth of
hierarchical clustering tree d , the number of leaf node |UB |, and
the number of child node c , we can observe the following:

cd−1 < |UB | = nB ⩽ cd

and the number of non-leaf nodes of the tree is I = cd−1
c−1 . In

Section 5, we perform an analysis of our proposed framework
CopyAttack where we vary this balance between c and d .

We note that numerous features of the users’ could be used for
their representations, such as user attributes, review comments,
and user-item interactions. In this work, we adopt the user-item
interactionsYB to represent the users because auxiliary information
such as the user’s attributes and review comments are not available.

We use the user representations pB ∈ Re learned via matrix
factorization (MF) [14] to measure similarity between users.

4.3.2 Masking Mechanism. While cross-domain user profiles con-
tain informative signal of items, due to the limited number of queries
in the target recommender system, not all the cross-domain user
profiles are useful for attacking a specific target item. Actually, only
user profiles related to the specific target items would be useful.
Therefore, we need to tune the hierarchical clustering tree with
a masking mechanism to locate some percentage of related cross-
domain user profiles for the target items. More specifically, for each
target item, we take an approach of masking the cross-domain user
profiles that do not include the target item. As shown in the left
part in Figure 2, the path from non-leaf node 3 to node 7 is masked,
since the cross-domain profiles of user uB7 and uB8 do not include
the target item (with pink color). As such, these cross-domain user
profiles (i.e.,uB7 anduB8 ) can not be explored by the RL agent, which
might further help reduce the action space. This reduction in the
action space in turn is efficient then to locate useful cross-domain
user profiles to perform an effective attack. We again note that the
target item v∗ comes from the set V = VA ∩VB . In other words,
the target item exists in the source domain so the masking will
never result in the entire tree being masked.

4.3.3 Hierarchical-structure Policy Gradient. With the hierarchical
clustering tree, the purpose of user profile selection is to learn the
policy p(aut |sut ) for seeking a path aut from the root to a certain leaf
of tree (i.e., user in UB ) at state t . Each non-leaf node in the tree is
a policy gradient network, which can be modeled as a Multi-Layer
Perceptron (MLP). As such, there are I policy gradient networks
with θ = {θ1,θ2, ...,θI } in the hierarchical clustering tree.

In particular, the policy network at nodei (having MLP parame-
ters denoted as θi ) first takes the current state as input and outputs
a probability distribution over all child nodes of nodei . Then, one
of the children is selected to move based on the probabilities. The
selection process then keeps moving down the clustering tree of
policy networks until reaching a leaf node (i.e., a user profile),
which can form the path of length d from the root to the leaf node
as follows:

aut =
{
au[t,1],a

u
[t,2], ...,a

u
[t,d ]

}
This selection process can be decomposed to multiple steps

according to selected path aut as follows:

pu (aut |sut ) =
d∏

pud (a
u
t |·, sut )

= pud (a
u
[t,d ] |s

u
t ) · pud−1(a

u
[t,d−1] |s

u
t ) · · ·pu1 (a

u
[t,1] |s

u
t )

We represent the state sut with the target item v∗ and previous
selected users UB→A

t =
{
uB1 , ...,u

B
i , ...,u

B
t
}
. We combine them

together with a Multi-Layer Perceptron (MLP). To decide which
path we will move to, by estimating the probability distribution
over the children at nodei (i.e., the policy network parameterized
by θi ), as follows:

xv∗ = RNN (UB→A
t ),

pui (·|s
u
t ) = so f tmax(MLP([qBv∗ ⊕ xv∗ ]|θui ))



where qBv∗ ∈ Re is the pre-train item representation via Matrix
Factorization (MF) coming from the source domain B. We model
the selected usersUB→A

t at state st with an RNNmodel and denote
its representation as xv∗ . Here we use ⊕ to denote the concatenation
operation. Also, here we seed the process by selecting action au0
(i.e., the first user to inject in the target recommender system) at
random, since at that time UB→A

0 is empty and would not provide
any insights from the RNN.We leave it as future work to investigate
other methods of seeding this process, although a random action is
one commonly performed in practice.

An illustration example of the process of selecting cross-domain
user profiles is shown in the left part in Figure 2. We have 8 user
profiles, and build a balanced hierarchical clustering tree with depth
3 over user profiles in the source domain B. For a given state st ,
the status point is initially located at the root (node1), and moves
to one of its child nodes to (node2) according to the probability
distribution given by the policy network PN-1 corresponding to
the root (node1). The process of selecting can stop when the state
point arrives at a leaf node in the tree; in this case, user uB3 ’s profile.
Note that at the state point node5, the path from node5 to leaf node
uB4 is masked since the profile of source domain user uB4 does not
include the currently attacking target item. The example path for
this selection is aut =

{
node1,node2,node5,uB3

}
, as the path with

green color in the figure.
Although we now have an efficient mechanism for selecting the

set of source domain users that the attacker will copy into the target
domain, we again note here that there could be some problems with
directly copying these nodes. It could be the case that not all items
in a user’s profile are useful in the promotion attack and could just
inject noise and/or increase the attack cost. Hence, next we will
introduce another policy gradient network that will learn how to
craft user profiles by reducing the number of items in the user’s
profile (i.e., the items they have interacted with).

4.4 User Profile Crafting
Not all the interactions towards items in cross-domain user profiles
are helpful. Directly injecting the raw user profiles into the target
recommender system may lead to increase the attacking budgets
and include some noise. To address this challenge, we propose a
clipping operation to craft the raw user profiles via policy network,
as shown in the middle of Figure 2.

More specifically, we first discrete the length into 10 different
levels as follows,

W = {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}

Then, a policy network is introduced to choose the action al =
w from the setW to decide the length we keep (i.e., number of
interactions for that selected user profile). As the raw selected user
profile includes the target item v∗, the raw user profile is clipped
around the target item with the window size w . As such, we can
consider the forward and backward related items. For example, the
selected raw profile of user uBi with 10 items is as follows,

PBui = {v1 → v2 → v3 → v4 → v5∗ → v6 → v7 → v8 → v9 → v10}

If the policy network takes the action al = 50%, the new user
profile through the clipping operation can keep around 50% raw

user profile as follows:

P̂Bui = {v3 → v4 → v5∗ → v6 → v7}

The state slt for model clipping operation can be decided by the
selected user ui and target item v∗. We estimate the probability of
choosing action al over the setW with the state slt , as follows,

pl (·|slt ) = so f tmax(MLP([pBi ⊕ qBv∗ ]|θ
l ))

where pBi ∈ Re and qBv∗ ∈ Re are the pre-trained user and item
representations via MF in source domain, respectively. Also, we
note that when considering how to craft the user profiles there are
perhaps a few options that could be taken on how to utilize al for
reducing the user profile size. For example, intuitively randomly
selecting a subset to keep would not make sense due to the fact it
would lose the temporal relations of items that were interacted by
the given user around the same time as the target item. Furthermore,
if we were to select perhaps based on the most similar nodes to
the target node from the user’s profile, then this might result in
a less realistic user profile that could potentially more easily be
detected. Hence, our selection of clipping the user profile with a
window size w around the target item indeed appears to be the
logical mechanism for clipping.

4.5 Injection Attack and Queries
To perform attacking in the black-box setting, we only have
query access to the target model and can get query feedback
consisting of Top-k recommended items for specific users. Hence, in
CopyAttack’s last stage we actually inject the selected user profiles
that we have crafted from the source domain to the target domain.
Then, once injected, the attacker can utilize their set of pretend users
UA

∗ they have already established in the target domain to gauge the
effectiveness of the injected user profiles and define a corresponding
reward. More specifically, here we use the reward function defined
in Eq. (1) where the effectiveness is defined based on the hit ratio
(HR@K) of the targeted item v∗ aggregated over the set of pretend
users’ (i.e., those in the set UA

∗ ) Top-k recommendations. We note
that these Top-k recommendations are the result/feedback upon
performing queries of target system A. Once obtaining the reward
it is then used to update the policy networks for both the profile
selection and profile crafting CopyAttack components.

5 EXPERIMENT
In this section, we conduct experiments to verify the effectiveness
of our model. We first introduce the experimental settings, then dis-
cuss the results (i.e., performance comparison) of various baselines,
and finally study the impact of different components in our model.

5.1 Experimental Settings
5.1.1 Datasets. Wehave used two cross-domain real-world datasets
in our experiments to validate the performance of CopyAttack.

MovieLen10M1 & Flixster2 (ML10M-FX). Both datasets are
popular online platforms for movie recommendation services, in
which they have millions of movies. Users in these two platforms
can watch them and give their personal comments (e.g., rating).
1https://grouplens.org/datasets/movielens/10m/
2https://sites.google.com/view/mohsenjamali/home



Table 1: Statistics of Two Datasets

Datasets (Target, Source) (ML10M, Flixster) (ML20M, Netflix)

Target
Domain

# of Users 19,267 38,087
# of Items 6,984 8,325

# of Interactions 437,746 838,491

Source
Domain

# of Users 93,702 478,471
# of Overlapping

Items 5,815 5,193

# of Interactions 4,680,700 62,937,958

Here, we take Movielen10M (ML10M) dataset as the target domain,
which is utilized to be attacked. Flixster (FX) dataset is treated as
the source domain to be used to copy some user profiles to attack
the Movielen10M (ML10M) domain. In these two datasets, they
have a lot of items in common, where overlapping items can be
aligned by the movie names. We only keep the interactions that
have a rating score of 5. After filtering, this cross-domain dataset
(ML10M-FX) has 5,815 overlapping items.

MovieLen20M3 & Netflix4 (ML20M-NF). These two datasets
are also online platforms for movie recommendation services. We
takeMovielen20M (ML20M) dataset as the target domain andNetflix
(NF) is the source domain. We identify movies with the same name
and the published year. We then perform filtering operations similar
to the ML10M-FX dataset. In this cross-domain dataset we have
5,193 overlapping items.

The statistics of these datasets are presented in Table 1. Note
that we only keep the overlapping items in the source domain.

5.1.2 Evaluation Metrics. In order to evaluate the quality of the
recommender systems, we use two popular accuracy metrics for
Top-K recommendation [13]: Hit Rate (HR@K) and Normalized
Discounted Cumulative Gain (NDCG@K). We set K as 20, 10, and
5. Higher values of the HR@K and NDCG@K indicate a better
predictive performance. As the ranking task is too time-consuming
to rank all the items for all the users, we randomly sample 100
items that the user did not interact with and then rank the test item
among them.

5.1.3 Attacking Environment and Parameter Settings. Graph Neural
Networks (GNNs) based techniques are the state-of-the-art models
for recommender systems [19]. The popular GNNs model in
recommendations, PinSage, for item recommendations [24], which
aggregates the local neighbors (users/items) in an inductive way,
has been applied in industry [12, 24]. Therefore, we adopt this
model as our target model, where user and items representations
can be learned via aggregating their local neighbors (items/users).

To train this target recommender systems, we randomly split
the target domain datasets, where we have 80% as a training set
for learning the parameters, 10% as a validation set to tune hyper-
parameters, and 10% as the test set. For all neural network meth-
ods, we randomly initialized model parameters with a Gaussian
distribution, where the mean and standard deviation is 0 and 0.1,
respectively. The learning rate and embedding size are set to be
0.001 and 8. The early stopping strategy was performed, where we
stopped training if the HR@10 on validation set increased for 5

3 https://grouplens.org/datasets/movielens/20m/
4https://www.kaggle.com/laowingkin/netflix-movie-recommendation

successive epochs. After completing training, the final performance
on testing datasets is 0.549 with HR@10metrics forML-10M dataset,
and 0.5474 for ML-20M dataset. After training, the recommender
systems in the target domain are fixed, where the model structure
and model parameter can not be changed. Then, we use the well-
trained model in a black-box attacking environment and evaluate
the different attacking performance.

We randomly sample 50 target items with less than 10 interac-
tions to perform attacking on the target domain. Without being
specifically mentioned, the main budget for attacking is the number
of cross-domain profiles, where we set the maximum budget as 30.
The number of pretend user in UA

∗ is set to 50 for both datasets.
To get the feedback from the target system, we perform queries on
the target system after each 3 injections.

We implemented the proposedmethod on the basis of Tensorflow.
The learning rate, the size of action, and discount factor are set to
0.001, 8, and 0.6, respectively. The hierarchical clustering tree is set
to 3 layers for Flixster dataset and 6 layers for Netflix dataset. The
user and item representation is trained with Matrix Factorization
techniques, where we use same hyper-parameters to train (learning
rate, embedding, etc).

5.1.4 Baselines. Most of existing attacking methods in recom-
mender systems are under white-box setting, where they assume
the attack can have full knowledge of the target model (e.g., model
structure, parameters) and access the datasets. There is not existing
black-box attack for recommender systems.We build some baselines
to evaluate the performance of attacking as follows:

RandomAttack: This baseline is proposed to randomly sample
cross-domain user profiles to attacking the target recommender
systems. TargetAttack40: Rather than randomly sampling user
profiles from source domain, this baseline is to sample the user
profile from the source domain with the target item which is
going to be attacked. Moreover, we apply the user profile crafting
operations as our proposed model to reserve 40% of user profiles.
TargetAttack70: This baseline is similar with TargetAttack40,
while setting the length of user profile as 70%. TargetAttack100:
This method is used to directly random sample user profiles
including target items from source domain, without further crafting
the selected user profile as TargetAttack40 and TargetAttack70.

In addition, we also build some baselines based on our proposed
methods as follows:

PolicyNetwork: This method directly uses the policy gradient
on the action space, without considering the hierarchical clustering
tree. CopyAttack-Masking: This method is used to evaluate the
effectiveness of masking mechanism in our proposed framework.
In other words, the attack can select any user profile in the source
domain. Note that the user profile crafting operation in this baseline
is also be removed, since the attack has larger probability to select
the user profile without the target items. CopyAttack-Length:
This method is used to evaluate the effectiveness of user profile
crafting operation in our proposed framework, where we remove
the user profile crafting operation.



Table 2: Performance comparison of different attacking methods for recommender systems

Dataset Algorithms HR@20 HR@10 HR@5 NDCG@20 NDCG@10 NDCG@5
# Average Items
per User Profile

ML10M- FX

Without Attack 0.0378 0.0228 0.0220 0.0231 0.0195 0.0192 0
RandomAttack 0.0391 0.0230 0.0222 0.0233 0.0195 0.0192 46
TargetAttack40 0.1203 0.0583 0.0094 0.0353 0.0195 0.0041 495
TargetAttack70 0.1772 0.0854 0.0354 0.0569 0.0341 0.0181 818
TargetAttack100 0.1166 0.0520 0.0226 0.0369 0.0209 0.0114 1350
PolicyNetwork 0.1936 0.0665 0.0250 0.0570 0.0258 0.0126 705

CopyAttack-Masking 0.0376 0.0227 0.0220 0.0230 0.0195 0.0192 49
CopyAttack-Length 0.0857 0.0434 0.0198 0.0282 0.0177 0.0101 1280

CopyAttack 0.2596 0.1103 0.0415 0.0799 0.0425 0.0205 695

ML20M-NF

Without Attack 0.0461 0.0043 0.0000 0.0115 0.0013 0.0000 0
RandomAttack 0.0468 0.0050 0.0000 0.0118 0.0015 0.0000 124
TargetAttack 40 0.1016 0.0405 0.0056 0.0288 0.0133 0.0024 203
TargetAttack70 0.1006 0.0402 0.0054 0.0285 0.0132 0.0023 321
TargetAttack100 0.0581 0.0006 0.0000 0.0139 0.0002 0.000 593
PolicyNetwork – – – – – – –

CopyAttack-Masking 0.0500 0.0045 0.0000 0.0125 0.0001 0.0000 133
CopyAttack-Length 0.0655 0.0018 0.0000 0.0158 0.0005 0.0000 496

CopyAttack 0.2704 0.124 0.0797 0.0969 0.0609 0.0467 255

(a) 10M HR@20 (b) 10M NDCG@20 (c) 20M HR@20 (d) 20M NDCG@20

Figure 3: Effect of Depth on Hierarchical Clustering Tree.

(a) 10M HR@20 (b) 10M NDCG@20 (c) 20M HR@20 (d) 20M NDCG@20

Figure 4: Effect of Item Popularity.

5.2 Performance Comparison of Recommender
Systems

We first compare the attacking performance of all methods. Table 2
shows the overall attacking performances on different methods
w .r .t HR@K andNDCG@KonML10M-FX andML20M-NF datasets.
We have the following main findings.

Randomly sampling cross-domain user profiles without any
strategies can not help promote the target items. When sampling

user profiles with the sampling strategy where the user profiles
should include the target items, the performance can be improved
significantly. In addition, when we constrain the sampling cross-
domain user profile scope into the users who include the target
items, this kind of method can obtain much better performance.
This indicates the user profiles with the target item are informative
to help perform attacking.



(a) 10M HR@20 (b) 10M NDCG@20

Figure 5: Effect of Budget (Cross-domain User Profiles) on ML10M-FX.

When considering the length of cross-domain user profiles,
the methods without target item constraint have very low item
budget (less than 50). When harnessingg this constraint on different
TargetAttack-(40, 70, 100), we found that themethods on user profile
without crafting perform the worse. It implies that introducing the
user profile crafting is important.Wewill further analyse the budget
from the number of user profile perspective in next section.

To better understand CopyAttack, we compare with PolicyNet-
work, CopyAttack-Masking, and CopyAttack-Length. We can see
that, for PolicyNetwork method, the performance of CopyAttack
degrades when eliminating the effect of the hierarchical clustering
tree. Note that PolicyNetwork method on ML20M-NF does not
work, since we can not obtain its results in 48 hours, while we can
obtain the results of others in just few hours. These observations
suggest the power of the hierarchical clustering tree.We also further
study the impact of the hierarchical clustering tree on next section.
Meanwhile, when we remove the user profile crafting component,
the promotion performance decrease too much and the item budget
is very huge, since the selected user profiles might introduce too
much noise and degrade the performance. Moreover, when the
masking mechanism is removed upon the CopyAttack-Length,
CopyAttack-Masking performs much worse. These results support
that the masking mechanism and user profile crafting component
are beneficial to select strong user profiles and reduce the item
budget for each user profile.

5.3 Model Analysis
In this subsection, we study the impact of model components and
model hyper-parameters.

5.3.1 Effect of Depth on Hierarchical Clustering Tree. The hierar-
chical clustering tree, as discussed in Section 4.3.1, is investigated
here where we have shown the performance when varying the
depth of the tree (i.e., the value of d). We can observe in Figure 3
that for 20M d = 3 performs the best in terms of HR@20 and
NDCG@20. Similarly, in 20M d = 6 performs the best. The reason
for this is believed to be the trade of in terms of how detailed the
clusters can be and the number of policy networks. This is because
the deeper the tree we have more policy networks that need to be
learned. In comparison, shallower trees have less policy networks,
but can harness the efficiency in terms of run-time and ability to
have a few large clusters to guide the source user profile selection.

5.3.2 Effect of Item Popularity. In this section, we study what
kinds of items are vulnerable to attack. To achieve it, we group the
item in target domain based on their popularity. Specifically, we
have 10 different groups, where each group account for 10% of items
in target domain. We then sample 50 target items from these 10
different groups respectively. At last, we evaluate the performance
on them. Th results are given on Figure 4. We note that the target
items with high popularity can be vulnerable to attack, where the
top 30% of items are vulnerable.

5.3.3 Effect of Budget (Cross-domain User Profiles). To perform
attacking under black-box attack, the budget is very important. In
this section, we investigate how the budget affect the performance
on different attacking methods. Figure 5 show the performance
with varied budget on ML10M-FX dataset. We first note, the
RandomAttack remains stable not matter how many user profiles.
When the value of budget increase, the performance of methods
injecting user profile with target items tends to increase first. And
then TargetAttack40, TargetAttak70, and TargetAttack100 can not
keep increasing when budget becomes too large, while CopyAttack
keep increasing since this method perform queries and get more
and more reward to train the attack. The results on ML20-NF is
shown at Supplementation Section.

6 CONCLUSION AND FUTUREWORK
Many user-oriented online services make use of deep learning
based recommender systems to suggest personalized lists for users
to interact with. Although works have shown that these models are
susceptible to attack, more recent studies have shown that state-of-
the-art defense strategies are able to detect data poisoning attacks in
recommender systems. This is primarily due to the fact that injected
fake user profiles are easily detected. Hence, in this work we have
proposed a cross-domain approach to copy users from a source
domain to the target domain towards the goal of promoting certain
target items. More specifically, we have introduced a reinforcement
learning based black-box approach thatmakes use of policy gradient
networks to first select users to copy, refines/crafts their profiles,
and finally injects them in the target domain where we can then
observe some feedback in terms of Top-k recommendations on our
set of pretend users. These pretend users are then used to determine
the reward for updating our model parameters.

Our thorough experiments on two real-world datasets show
the superiority of the proposed framework, CopyAttack, over a



set of competitive baselines. Then, we furthermore performed
model analysis to better understand the behavior of CopyAttack.
Our future work will be towards effective strategies for targeted
attacks on items that need not be in the source domain and also for
demotion and furthermore include more rich side information.
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A SUPPLEMENTATION
We include the experiment result about the effect of budget for
understanding our proposed method in Figure 6. We again note
that in this dataset the PolicyNetwork baseline was unable to finish
in a reasonable time limit of 48 hours, so we do not report their
performance. This also further strengthens the usefulness of the
hierarchical clustering tree as compared to a single policy gradient
network for the entire action space of all users (in the source
domain), since CopyAttack obtains the results in just a few hours
(e.g., 3 hours). Please note that we will release our code upon the
acceptance of this paper for reproducibility.

(a) 20M HR@20

(b) 20M NDCG@20

Figure 6: Effect of Budget (Cross-domain User Profiles) on
ML20M-NF.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 The Proposed Framework
	4.1 An Overview of the Proposed Framework
	4.2 Attacking Environment Overview
	4.3  User Profile Selection via Hierarchical-structure Policy Gradient
	4.3.1 Hierarchical Clustering Tree over Cross-domain User Profiles
	4.3.2 Masking Mechanism
	4.3.3 Hierarchical-structure Policy Gradient

	4.4 User Profile Crafting
	4.5 Injection Attack and Queries

	5 Experiment
	5.1 Experimental Settings
	5.1.1 Datasets
	5.1.2 Evaluation Metrics
	5.1.3 Attacking Environment and Parameter Settings
	5.1.4 Baselines

	5.2 Performance Comparison of Recommender Systems
	5.3 Model Analysis
	5.3.1 Effect of Depth on Hierarchical Clustering Tree. 
	5.3.2 Effect of Item Popularity. 
	5.3.3 Effect of Budget (Cross-domain User Profiles). 


	6 Conclusion and Future work
	References
	A Supplementation

