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Abstract—Network-based time series forecasting is a challeng-
ing task as it involves complex geometric properties, higher-
order relations, and scale-free characteristics. Previous work has
modeled network-based series as oversimplified graphs or has
ignored the power law dynamics of real-world temporal and
dynamic networks, which could yield suboptimal results. With
the aim to address these issues, here we propose THINK, a
novel framework based on hypergraph learning that captures
the hyperbolic properties of time-evolving dynamic hypergraphs.
We design an elegant hyperbolic distance-aware hypergraph
attention mechanism to better capture informative internal
structural features on the Poincaré ball. Through quantitative
and conceptual analysis on seven tasks across temporal, and
time-evolving dynamic hypergraphs, we demonstrate THINK’s
practicality in comparison to a variety of benchmarks spanning
finance, health, and energy networks.

Index Terms—hyperbolic, hypergraphs, spatio-temporal fore-
casting.

I. INTRODUCTION

Network time-series forecasting is a critical problem with

several applications, e.g., for financial predictions, for traffic

prediction, and for forecasting the trends of rare diseases [1]–

[3]. Making accurate predictions about the future is a chal-

lenging task, as both inter-series and intra-series dependencies

need to be modeled simultaneously [4]. Recent work [5],

[6] leveraged graph neural networks (GNNs) to model the

inter-series relationships as a graph since GNNs can capture

the symmetries in graph data [7]. However, most real-world

networks innately comprise higher-order relations that go

beyond pairwise connections [2], [8]. One way to model such

higher-order relations is to use hypergraph generalizations of

graphs [9], where a hyperedge can connect multiple nodes and

thus can naturally express higher-order relations such as group

behavior between multiple nodes [10].

In addition to higher-order correlations, several real-world

temporal networks such as blockchain transaction networks,

and stock networks exhibit a scale-free or a hierarchical

structure [11], where a small change in a single network entity

may cause a series of chain reactions leading to a “domino

effect.” For example, changes in crude oil prices can lead to

contagious effects on several groups of stocks across industries

such as transportation, energy, utilities, etc. [12]. However,

conventional (hyper)graph models are defined in the Euclidean

space, and thus suffer from large distortions when representing

such networks [13].

*Equal Contribution

At the same time, typical characteristics of scale-free net-

works such as long-tail node degree distributions and the

presence of influential hubs are handled well in the hyper-
bolic space [14]. However, existing hyperbolic graph neural

networks [15] do not generalize to higher-order connections

in hypergraphs.

With this in mind, here we leverage the hyperbolic space

to encode scale-free temporal and time-evolving dynamic

hypergraphs. In particular, we formulate the δhg hyperbolic-

ity for hypergraphs (§II) based on the shortest path algo-

rithms in hypergraphs and we build elegant distance-aware

hyperbolic hypergraph aggregation operations (§III-B) that

use hyperbolic distance to preserve the information during

message propagation. We present a novel hyperbolic learning

framework which we call Temporal Hypergraph Hyperbolic
Network (THINK), which uses hyperbolic hypergraph and

temporal operations (§III-C) to encode temporal, and time-

evolving dynamic networks.

Our contributions can be summarized as:

• We formulate δhg hyperbolicity for hypergraphs, and we

propose DHHAN, a Distance-aware Hyperbolic Hypergraph

Attention Network, to capture higher-order scale-free cor-

relations in the hyperbolic space.

• We devise THINK, which combines hyperbolic temporal

convolutions with DHHAN in order to capture hyperbolic

properties in the network and in the temporal domains.

• We show that THINK outperforms several state-of-the-art

methods across seven tasks defined on spatio-temporal

and dynamic networks. We further demonstrate THINK’s

practicality on financial, health, and energy applications.

II. HYPERGRAPH HYPERBOLICITY & HYPERBOLIC SPACES

The δhg Hyperbolicity is a score that provides a degree

of similarity of the hypergraph to the hyperbolic space. For

a hypergraph G, the δhg hyperbolicity can be computed using

the Gromov product [16], which is defined as follows for a

triple of nodes x, y, and z:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)) (1)

where the distance d(x, y) is the shortest s-walk, called the

s-distance between nodes x and y [17]. The s-walk is a higher-

order walk in the hypergraph, where s controls the “width” in

terms of edge overlap size. The s-walk between nodes x and y
is a sequence of nodes that pairwise share at least s hyperedges

(we provide the algorithm for s-distance in the Appendix).
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TABLE I: Basic dataset statistics including δhg and δrel hy-

perbolicities of (i) spatio-temporal networks such as Chicken

Pox spread (CPox), windmill energy (WMill), and stock

networks of NYSE, NASDAQ, CSE, and TSE exchanges, and

(ii) dynamic networks such as Twitter tennis mentions (DTT).

Dataset # Timesteps # Nodes δhg δrel

DTT [18] 120 1,000 1.0 -
CPox [19] 522 20 1.5 0.190
WMill [20] 17,472 319 1.0 0.025
NYSE [1] 1,245 1,737 0.5 0.087
TSE [21] 1,159 95 1.5 0.074
NASDQ [2] 1,245 1,026 1.0 0.107
CSE [22] 1,293 85 1.5 0.176

We now define δhg as the minimal value greater than zero

for which the following holds for any nodes x, y, z, and w:

(x, z)w ≥ min((x, y)w, (y, z)w)− δhg (2)

In addition to δhg, we also compute the relative dataset-level

δrel hyperbolicity using the Euclidean distance between tempo-

ral node features [23] (formally defined in the Appendix). Low

values of δhg and δrel hyperbolicity indicate that the space has

an underlying hyperbolic geometry, i.e., an approximate tree-

like structure, and that the hyperbolic space would be well-

suited to embed it [24]. Table I shows the hyperbolicity of

various temporal and dynamic hypergraphs: we can see that

the degree of hyperbolicity in these networks is generally high,

i.e., low δhg, δrel, suggesting that scale-free hypergraphs can

benefit from representations in the hyperbolic space.
The hyperbolic space is a non-Euclidean geometry with

constant negative curvature. We implement the Poincaré ball

model of the hyperbolic space. This model is defined as

(B, gBx ), where the manifold B = {x ∈ R
n : ||x|| < 1}

is endowed with the Riemannian metric gBx = λ2
xg

E , where

the conformal factor λx = 2
1−||x||2 and gE = diag[1, . . . , 1]

is the Euclidean metric tensor. We denote the tangent space

(Euclidean) centered at point x as TxB. Since hyperbolic

spaces are non-Euclidean, we leverage the formulations of

Möbius gyrovector spaces, which allow us to generalize stan-

dard operations to hyperbolic geometry [15].

Möbius Addition & Hyperbolic Distance. Following [15],

the Möbius addition ⊕ and the hyperbolic distance dB(x,y)
for points x,y∈B is given as follows:

x⊕ y =
(1 + 2〈x,y〉+ ||y||2)x+ (1− ||x||2)y

1 + 2〈x,y〉+ ||x||2||y||2 (3)

dB(x,y) = 2tanh−1(|| − x⊕ y||) (4)

where, 〈., .〉 and || · || denote the inner product and the norm,

respectively. We now define the mapping functions to project

Euclidean vectors to the hyperbolic space, and vice versa.

Exponential & Logarithmic Map. For point x ∈ B, the

exponential map expx : TxB → B and the logarithmic map

logx :B→TxB for tangent vector v and point y are

expx(v) = x⊕
(

tanh

(
λx||v||

2

)
v

||v||

)
(5)

logx(y) =
2

λx
tanh−1(|| − x⊕ y||) −x⊕ y

|| − x⊕ y|| (6)

x� y = tan

( ||xy||
y

arctan−1(||y||)
) ||xy||
||y|| (7)

W ⊗ x = expo(W logo(x)) (8)

Poincaré Fully Connected Layer (Fc(·)). Given the inputs

x∈Bn with parameters Z= {zk∈ToBn}mk=1 and bias terms

r={rk ∈ R}mk=1, we follow [25] to define (Fc(·)) as follows:

Fc(x) = w(1 +
√

1 + ||w||2)−1,w = (sinh(vk(x)))mk=1 (9)

where vk(x) is the generalized linear transform defined as

vk(x)=2||zk||sinh
−1(λx〈x, zk〉cosh(2rk)−(λx−1)sinh(2rk)) (10)

Poincaré β-concatenation (β-cat(·)) is used to join M inputs

{xi ∈ Bni}Mi=1 into a vector y = β-cat({xi}Mi=1) ∈ Bn,

where n =
∑M

i ni. Following [25], the inputs are first

scaled using coefficients βn=B(n2 ,
1
2 ), where B denotes the

beta distribution. These features are then concatenated in the

tangent space as follows:

y=expo(βnβ
−1
n1 logo(x1)

�, . . . , βnβ
−1
nM logo(xM )�)� (11)

III. METHODOLOGY: THINK

Fig. 1 shows an overview of THINK. In the following sub-

sections, we explain how we extract temporal features using

hyperbolic temporal convolutions (§III-A). We then describe

how we aggregate node features via distance-aware hyperbolic

hypergraph aggregation (§III-B) followed by detailing how

hyperbolic temporal and spatial components are combined to

capture the temporal evolution of hypergraphs (§III-C).

A. Hyperbolic Temporal Convolution

The temporal dependencies of several common hypergraphs

such as stock networks often show power-law distribution

[26], which indicates the possible presence of hierarchical

relations in time-series data. Thus, we implement a temporal

convolution in the hyperbolic space τ -conv(·) [25]. In contrast

to the Euclidean space, the Poincaré ball model reflects the

power law distribution with its radius [15], thus enabling it to

better represent the hierarchical relations in a time-series data.

Given Euclidean temporal input node features XE , we first

project them to hyperbolic features X l via the exponential

mapping as X l = expo(XE). Let K denote the kernel size

of the hyperbolic temporal convolution with input features

X l ∈ BN×nK×C corresponding to N nodes for a historical

lookback period τ = nK to the lth layer. Here, C is the

number of features per node. We concatenate the node features

{xis∈BN×C}Ks=1 in the receptive field of the kernel into

features xi ∈ BN×CK using a Poincaré β-concatenation,

which is then operated on by a Poincaré fully connected layer

as shown in Fig. 1. These transformations produce X l+1:

X l+1 = τ -conv(X l) = {Fc(β-cat({xis}Ks=1))}
n

i=1 (12)
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Fig. 1: Overview of our proposed THINK framework for distance-guided hyperbolic aggregation and interaction learning.

B. Distance-Aware Hyperbolic Aggregation

We use hypergraph convolutions in the hyperbolic rather

than the Euclidean space [9]. As the hypergraph grows expo-

nentially, we use the hyperbolic space, where we can obtain

more robust embeddings [15]; in contrast, the polynomial

growth of the graph volume in the Euclidean space leads to

distortion in the embeddings for scale-free networks [14].

Next, we describe an attentive hyperbolic hypergraph con-

volution HA(·), which benefits from the expressiveness of

both hypergraphs and hyperbolic embeddings [15]. We apply

the attentive hyperbolic hypergraph convolution HA(·) on the

hypergraph G(V,E), where V = {v1, . . . , v|V |} is a set of

nodes and E={e1, . . . , e|E|} is a set of hyperedges, and each

hyperedge ei connects a subset of nodes {vj ∈ ei}. As shown

in Fig. 1, DHHAN is composed of two steps:

Node to Hyperedge Aggregation computes the hyperedge

feature vector zi by aggregating the hyperbolic features

{uk|vk ∈ ei} of the nodes that belong to hyperedge ei. In

particular, we use the Einstein midpoint [27], which general-

izes mean-based aggregation to the hyperbolic space:

zi =
1

2
⊗

⎛
⎝ ∑

uk|vk∈ei

λuk∑
uj |vj∈ei(λuj

− 1)
uk

⎞
⎠ (13)

where, λu is the conformal factor, defined as λu = 2
1−||u||2 .

Hyperedge to Node Aggregation updates the hyperbolic node

features uj using the information from the hyperedges that

contains the node vj . We use self-attention aggregation to

learn the varying importance of each relation {ei|vj ∈ ei}
with respect to node vj . We further develop a hyperbolic

distance-aware self-attention mechanism that better preserves

the hyperbolic properties while propagating information [28].

We use the hyperbolic distance dB(uj , zi) between features

uj and the features of hyperedges containing the node vj ,

i.e., {zi|vj ∈ ei}. The distance-guided attention learns the

attention coefficient αij using the node’s hyperbolic feature

uj and the aggregated hyperedge features {zi|vj ∈ei}:

αij = a� ⊗ (uj ⊕ zi)� dB(uj , zi) (14)

where .� denotes transposition and a is a trainable vector.

With the help of the attention coefficients αij , the hyper-

graph convolution HA(·) updates the hyperbolic node features

U = {u1, . . . ,u|V |} to a new set of hyperbolic features

U ′ = {u′
1, . . . ,u

′
|V |}, given by U ′ = HA(G, U), where

u′
j = expo

⎛
⎝ReLU

⎛
⎝ ∑

i|sj∈ei
αij logo(Fc(zi))

⎞
⎠
⎞
⎠ (15)

We now generalize the above hyperbolic hypergraph convolu-

tion HA(·) to time-varying input features Ql ∈Bτ×N×C and

time-evolving dynamic hypergraphs G = {Gi}τi=1 and denote

it by HAτ (·). The generalized attentive hyperbolic hypergraph

convolution layer HAτ (·) applies the same HA(·) layer to each

snapshot Gi of the input and outputs features Ql+1 given by

Ql+1=HAτ (Ql, G)={HA(Gt,Ql
t ∈ BN×C)}τt=1 (16)

C. THINK: End-to-End Framework

We position the DHHAN between two hyperbolic temporal

convolutions. This design choice allows the propagation of

spatially updated features along the time axis through temporal

convolutions. As shown in Fig. 1, we operate a hyperbolic

temporal convolution on features XE followed by DHHAN and

another hyperbolic temporal convolution that produces final

outputs ŷt = THINK(XE , G), given by

ŷt = logo (τ -conv ((HAτ (τ -conv(expo(XE))) , G))) (17)

IV. EXPERIMENTS

A. Spatio-temporal & Dynamic Hypergraph Tasks

In node regression, we aim to forecast each node’s fu-

ture value for a single time-step. We evaluate THINK on

various node regression problems: wind energy forecasting

[20], county-level chickenpox cases prediction [19], [20], and

risk forecasting [35] on the Chinese stock exchange (CSE).

We further apply THINK on spatio-temporal classification

problems, which predict each node’s single time-step future

trend. We evaluate THINK on stock movement classification

[2] (on NASDAQ) with targets being stock prices going up,

going down, or staying neutral.
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TABLE II: Performance comparison to baselines on spatio-temporal and time-evolving dynamic hypergraphs (mean of 25

runs). Purple & pink show the best and the second best results, respectively, and Clf denotes stock movement classification on

NASDAQ. ∗ indicates significant (p<0.01) improvements over state-of-the-art methods under Wilcoxon’s Signed Rank Test.

Dataset DTT CPox WMill Risk NYSE TSE Clf

δhg 1.0 1.5 1.0 1.5 0.5 1.5 1.0
δrel - 0.190 0.025 0.176 0.087 0.074 0.107

Model MSE(↓) MSE(↓) MSE(↓) MSE(↓) SR(↑) NDCG(↑) SR(↑) NDCG(↑) F1(↑)

GConvGRU [29] 2.05±5e−3 1.14±9e−4 1.38±3e−3 0.61±6e−3 0.89±2e−3 0.57±4e−3 0.81±9e−4 0.55±1e−3 0.25±2e−4

EGCN-O [30] 2.06±5e−3 1.12±4e−3 1.36±9e−4 0.57±8e−4 0.92±4e−3 0.59±6e−3 0.83±1e−3 0.57±5e−3 0.28±3e−3

DCRNN [31] 2.05±4e−3 1.12±6e−3 1.28±4e−3 0.45±2e−3 0.98±5e−3 0.69±9e−4 0.92±3e−3 0.64±8e−4 0.32±2e−3

TGCN [32] 2.04±1e−3 1.11±2e−3 1.27±5e−3 0.43±3e−3 1.02±1e−3 0.71±6e−3 0.93±2e−3 0.67±1e−3 0.34±4e−3

ST-TGCN [33] 2.04±3e−3 1.12±1e−3 1.24±2e−3 0.37±1e−3 1.04±2e−3 0.70±3e−3 0.96±8e−4 0.71±6e−3 0.37±4e−3

DyGrAE [34] 2.03±1e−3 1.12±6e−3 1.24±3e−3 0.40±2e−3 1.03±8e−4 0.72±4e−3 0.95±3e−3 0.69±5e−3 0.36±2e−3

RSR-I [1] - 1.13±2e−3 1.23±5e−3 0.39±4e−3 1.05±1e−3 0.75±6e−3 0.99±1e−3 0.72±9e−4 0.38±6e−3

EGCN-H [30] 2.04±4e−3 1.11±9e−4 1.21±2e−3 0.39±8e−2 1.03±3e−3 0.72±6e−3 0.96±1e−3 0.71±2e−3 0.37±4e−3

STHGCN [2] 1.03±6e−3 1.11±2e−3 1.19±1e−3 0.37±4e−3 1.10±3e−3 0.78±6e−3 1.07±2e−3 0.74±5e−3 0.40±1e−3

TCONV + DHHAN 0.61±3e−3∗ 1.10±6e−3 1.08±2e−3∗ 0.34±3e−3∗ 1.14±7e−3∗ 0.81±1e−3∗ 1.11±2e−3∗ 0.76±5e−3 0.44±8e−3∗

THINK 0.58±5e−3∗ 1.09±4e−3∗ 1.05±2e−3∗ 0.32±2e−3∗ 1.18±4e−3∗ 0.86±9e−4∗ 1.19±6e−3∗ 0.81±7e−4∗ 0.49±4e−3∗

HHN THINK

0.55

0.6

0.65

0.7

DTT

M
S

E
←
−

HHN THINK

1.08

1.1

1.12

1.14 CPox

M
S

E
←
−

Fig. 2: Performance distribution with confidence intervals

(over 25 runs) of hyperbolic hypergraph network (HHN, first,

pink), and THINK (second, blue). We use the same hyperbolic

temporal convolution for DTT and CPox datasets.

Finally, we apply THINK on stock ranking [2] over the

Tokyo Stock Exchange (TSE) [21] and the New York Stock

Exchange (NYSE) [1] markets. Following [1], we formulate

stock prediction as a ranking problem, where our target is to

learn a ranking function that maps a set of stocks to a ranking

list. In the learned ranking list, stocks with higher ranking

scores are expected to yield higher profits.

B. Evaluation Measures

We evaluate risk prediction, chickenpox cases forecasting,

and windmill power via Mean Squared Error (MSE). We eval-

uate THINK on node classification using F1-score. We evaluate

THINK’s profitability and ranking ability using Sharpe Ratio

(SR) and Normalized Discounted Cumulative gain (NDCG).

The Sharpe Ratio is a measure of the return Ra in excess of

a risk-free return Rf , given by SR =
E[Ra−Rf ]
std[Ra−Rf ]

. Following

[1], we adopt a daily-buy-hold trading strategy in which, on

trading day t, we acquire a ranked list of stocks based on the

predicted return ratio for every stock. From this list, we buy

the top-k stocks, which are sold at the closing market price of

the following day t+ 1.1

1We release our code at: https://github.com/shivamag125/ICDM22-THINK

V. RESULTS AND ANALYSIS

A. Performance Comparison

We evaluate THINK on various spatio-temporal and dynamic

hypergraph problems in Table II, and we observe that THINK

is the new state of the art across most datasets, and that it can

generalize to various downstream applications spanning across

time-evolving dynamic and spatio-temporal hypergraphs. This

improvement is due to two aspects: (i) hypergraph learning

and (ii) hyperbolic geometry. First, THINK captures higher-

order relations via hypergraphs instead of constraining them

as pairwise edges in ordinary graphs (RSR-I, EGCN-H).

Second, spatio-temporal learning can significantly benefit from

hyperbolic geometry, especially in datasets that exhibit scale-

free nature [15]. A common limitation of spatio-temporal

(hyper)graph approaches (STHGCN, EGCN-H) is that they

use the Euclidean space to encode scale-free properties of

spatio-temporal and time-evolving dynamic networks, which

leads to high distortion in their learned representations [14].

Impact of Hyperbolic Temporal Convolution. In order to

further quantify the improvements due to hyperbolic learning

in the temporal domain, we compare it to Euclidean learning

in Table II. Specifically, we replace the hyperbolic temporal

convolution with a Euclidean temporal convolution [3]. We

observe significant (p < 0.01) improvements when using

hyperbolic learning for representing the time-series data. This

improvement empirically validates that hyperbolic learning in

the temporal front equips THINK with geometrically appro-

priate inductive biases for better representing the power law

dynamics of temporal data.

B. Impact of Distance-Aware Self-Attention
In order to contextualize the improvements from our

distance-guided self-attention hyperbolic message propaga-

tion, we contrast THINK to a version without the enhancement

of distance attention (HHN). The results are shown in Fig. 2,

where can see that the model without the enhancement of

distance attention reduces the overall performance on all

datasets and also increases the variance.
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Fig. 3: Performance variation with (a) successive hyperedge

decomposition and (b) hyperedge removal with error bounds

(over 25 independent runs). The blue (top curve) and red (bot-

tom curve) indicate THINK and Euclidean THINK (Euclidean

temporal convolution + hypergraph attention), respectively.

These observations suggest that thanks to its hyperbolic

distance-guided message propagation THINK can better cap-

ture the impact of a node on the overall representation of

the group. Moreover, these observations tie up with those of

[28], who showed that distance-aware aggregations preserve

hyperbolic message aggregations in the tangent space using

hyperbolic distances.

C. Impact of Hypergraph & Hyperbolic Learning

Impact of Hypergraph Learning. We compare the perfor-

mance of representing relations as hyperedges vs. as ordinary

pairwise edges. We decompose each hyperedge of degree n
into

(
n
2

)
pairwise edges in increasing order of hyperedge

degree, and we analyze the performance variation as we

decompose hyperedges in Fig. 3a.2 We observe poorer per-

formance as we decompose hyperedges into pairwise edges

since decomposing hyperedges induces noise in the network.

The worst performance is achieved when all hyperedges are

decomposed, which is when THINK degenerates to hyperbolic

graph attention model. Through this experiment, we note that

hypergraphs effectively capture higher-order relations between

nodes as opposed to simple graphs.

Impact of Hyperbolic Learning We probe the impact of

highly influential nodes (hubs) and the effectiveness of domain

knowledge on THINK’s performance. We identify hubs of the

scale-free network by sorting the nodes in decreasing order

of their degree and we successively remove the corresponding

hubs’ hyperedges. Then, we compare THINK to its Euclidean

variant in Fig. 3b.2 We observe poorer performance for both

models as we remove edges, and they perform the worst after

all hyperedges are removed, which essentially degenerates

THINK to a temporal model. Interestingly, we note that as we

isolate the most influential hubs, THINK’s performance drops

(larger drops in hypergraphs with low δhg), likely because it is

unable to incorporate their strong impact on other nodes and

the network becomes less hyperbolic.

2Note that we observe similar trends in other datasets.

VI. CONCLUSION

Building on our δhg hyperbolicity formulation for hyper-

graphs, we introduced an elegant distance-guided attentive

hyperbolic hypergraph neighborhood aggregation mechanism

(DHHAN), which better captures higher-order relations in the

hyperbolic space. Then, using DHHAN as a building block,

we developed an end-to-end framework, THINK, which blends

hyperbolic temporal convolutions with spatial DHHAN. Our

experiments on seven downstream tasks demonstrated THINK’s

effectiveness over dynamic time-evolving and spatio-temporal

hypergraph networks in comparison to various benchmarks.
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APPENDIX

A. Dataset-Level δrel Hyperbolicity Estimation

Following [24], we use the Gromov product [16] to estimate

the dataset-level hyperbolicity. Let us define x,y, z ∈W as

the temporal features, where W is the metric space.

Algorithm 1: s-walk-distance

Input : Incidence matrix H|V|×|E|, int s, source S,

target T
Result: s-distance between S and T
initialize s adj|V |×|V | = 0;

for each vertex v ∈ V do
e = H[v];
for each vertex v′ ∈ V do

ne = H[v′];
if length (e ∩ ne) >= s then

s adj[v][v′] = 1;

end
end

end
G = create graph from adjacency(s adj);

return Dijkstra(G, S)[T ]

The Gromov product for features x and y is given by

(y, z)x =
1

2
(l(x,y) + l(x, z)− l(y, z)) (18)

where l(x,y) is the Euclidean distance between x and y.
We define the δ hyperbolicity as the smallest non-negative

value such that the following holds:

(x, z)w ≥ min((x,y)w, (y, z)w)− δ. (19)

Following [36], we use the scale-invariant δrel hyperbolicity,

given by δrel =
2δ

diam(W ) , where diam(W ) is the largest pairwise

distance (diameter) for the metric space W . By definition,

δrel ∈ [0, 1] and specifies how close a dataset is to a hyperbolic

space. A low δrel hyperbolicity (i.e., close to 0) for a network

indicates that it has an underlying hyperbolic geometry.

B. Hypergraph Construction
We construct a hypergraph G= (V,E), where each vertex

v∈V , and each hyperedge e∈E is a subset of related nodes.
DTT, CPox, WMill Following [37], we created hyperedges

based on the neighborhood of each node. For each node

v, we first found the neighbors N(v) and we created a

set N = {(v,N(v))|v ∈ V }. Then, we merged pairs of

elements (vi, N(vi)), (vj , N(vj)) based on their similarity

which is calculated using Sørensen-Dice coefficient (SCD). We

calculated SCD for every pair of elements and we merged them

until no two pairs had an SCD score lower than a threshold.
Stock Datasets: NYSE, NASDAQ, TSE and CSE Following

[38] we constructed hyperedges between stocks based on:

(i) industry hyperedges and (i) Wiki corporate hyperedges.

The former connect stocks belonging to the same industry,

while the latter consist of first- and second-order corporate

relationships between stocks. The first-order relation is defined

as X R1−→ Y, where R1 represents the entity-relation between

stocks X,Y. We constructed a hyperedge of a source stock and a

set of target stocks related to it via the same Wikidata relation.

The second-order relation is pairwise in nature and defined as

X R2−→ Z R3←− Y, where Z denotes an entity connecting X and

Y via entity-relations R2, and R3.
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