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Abstract— Social media has been widely adopted by online
users to share their opinions. Among users in signed networks,
two types of opinions can be expressed. They can directly specify
opinions to others via establishing positive or negative links; and
they also can give opinions to content generated by others via
a variety of social interactions such as commenting and rating.
Intuitively these two types of opinions should be related. For
example, users are likely to give positive (or negative) opinions
to content from those with positive (or negative) links; and users
tend to create positive (or negative) links with those that they
frequently positively (or negatively) interact with. Therefore
we can leverage one type of opinions to power the other.
Meanwhile, they can enrich each other that can help mitigate
the data sparsity and cold-start problems in the corresponding
predictive tasks – link and interaction polarity predictions,
respectively. In this paper, we investigate the problem of joint
link and interaction polarity predictions in signed networks.
We first understand the correlation between these two types of
opinions; and then propose a framework that can predict signed
links and the polarities of interactions simultaneously. The
experimental results on a real-world signed network demon-
strate the effectiveness of the proposed framework. Further
experiments are conducted to validate the robustness of the
proposed framework to data with cold-start users.

I. INTRODUCTION

Traditionally, network analysis has focused on unsigned
networks (or networks with only positive links). Many social
networks in social media can have positive and negative links
(or signed networks [1], [2]). Such examples include the
Epinions network with trust and distrust and the Slashdot
network with friend and foe links. Negative links have been
proven to advance various network analysis tasks such as link
prediction [3], [4], [5], node classification [6], community
detection [7], [8], [9], and recommendations [10], [11], [12].
Meanwhile, a recent study has shown that invisible negative
links in social media are predictable [13] and that they can
help convert many social media unsigned networks such
as Facebook friendship and Twitter following into signed
networks. Therefore, signed networks are ubiquitous and
have attracted increasing attention in recent years [14].

Meanwhile, social media has been increasingly used by
online users to share and exchange opinions. In signed
networks, users can directly express positive (or negative)
opinions to others by establishing positive (or negative) links.
They can also specify positive (or negative) opinions to
content created by others via various interactions such as
commenting and rating. These two types of opinions should
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be related inherently. For example, a user receiving more pos-
itive (or negative) links is likely to receive more positive (or
negative) opinions for his/her content; while users are likely
to give positive (or negative) opinions to content generated
by those with positive (or negative) links. In reality, users
may also explicitly only give opinions to a small number
of users or content. For example, both positive and negative
links follow a power-law-like distribution – a small number
of users specify many positive (or negative) links while a
large proportion of users specify a few positive (or negative)
links [15]. Hence, link prediction [5] and interaction polarity
prediction [16] are proposed to infer implicit opinions of
these two types, respectively.

Recent years have witnessed a large number of algorithms
for signed link prediction [5], [17], [4], [18] and interaction
polarity prediction [19], [20], [16], [21]. However, the ma-
jority of them have tackled these two tasks independently.
As aforementioned, the corresponding opinions in these two
tasks could be correlated and we can utilize one to power
the other. Thus, we could boost the performance by jointing
these two tasks. Meanwhile, due to the sparsity nature of
social media data, both tasks have been shown to severely
suffer from the data sparsity and cold-start problems [7],
[21]. By capturing the correlation between these two types of
opinions, one can enrich the other and therefore have more
information to use for their corresponding tasks. Hence, a
joint framework has the potential to mitigate the data sparsity
and cold-start problems for both tasks.

In this paper, we study the problem of joint link and inter-
action polarity predictions in signed networks. In particular,
we investigate – (a) whether opinions in the two tasks are
related? and (b) how to utilize their correlations for joint
link and interaction polarity predictions? Providing answers
to these two questions, we propose a novel framework LIP
that can infer links and polarities of interactions jointly. Our
main contributions in this work have been summarized as
follows:
• We validate the correlations between link signs and

interaction polarities from both global and local per-
spectives;

• We propose a joint link and interaction prediction
framework (LIP) that explicitly incorporates the corre-
lations to predict links and interaction polarities simul-
taneously;

• We conduct experiments in a real-world signed network
to demonstrate (a) the effectiveness of LIP and (b) the
robustness of LIP to the data sparsity and cold-start
problems.



The rest of this paper is organized as follows. In Section 2,
we formally define the joint prediction problem. In Section
3, we describe the dataset used in our work, along with our
analysis of the correlations. We discuss our proposed novel
joint framework in Section 4. In Section 5 the experimental
results and findings are presented. We briefly review related
work in Section 6. Conclusions and future work are given in
Section 7.

II. PROBLEM

Let U = {u1, u2, . . . , un} denote the set of n users. We
represent signed links between users in an adjacency matrix,
T ∈ Rn×n, where Tij = 1 if ui creates a positive link to uj ,
−1 if ui creates a negative link to uj , and 0 otherwise (i.e.,
when ui has shown no link to uj). Let R = {r1, r2, . . . , rm}
be the set of m content items generated by U . We use A ∈
Rn×m to denote the authorship matrix where Aij = 1 if
ui creates rj and Aij = 0 otherwise. Social media provides
multiple ways for users to express their opinions to content
items generate by other users. For example, Facebook and
Twitter allow their users to comment on content; Youtube
provides thumbs-up and -down buttons; and Epinions enables
its users to rate the helpfulness of the content with scores
from 1 to 6. We use H ∈ Rn×m to denote opinions expressed
by U to R, where Hik = 1(or−1) if ui gives a positive (or
negative) opinion to rk and we use Hik = 0 to indicate no
explicit opinion is expressed from ui to rk. Note that in this
paper, we define positive (or negative) interactions between
ui and uj as ui giving positive (or negative) opinions to
content items generated by uj . In other words, an interaction
between users is defined as a triplet (ui, rk, uj) where ui
expresses opinions to rk that was generated by uj .

With the above notations and definitions, our problem
is stated as follows: given the signed relations T, the
authorship matrix A and the user-item opinion matrix H,
we aim to learn a predictor that can infer signed links and
interaction polarities simultaneously by leveraging T, A,
and H.

Note that when the content of the item is available, we
also can utilize the content of R. However, in this paper, we
focus on leveraging T, A, and H and would like to leave
the problem of exploiting content as one future work.

III. DATA ANALYSIS
In this section, we conduct preliminary analysis on the

correlation between signed links and interaction polarities.
We begin by introducing the dataset in our study.

A. Dataset

We collected a dataset from Epinions for this investigation.
Epinions users can give positive and negative links to each
other, which we use to construct the T matrix. They also can
write reviews and we use this data to construct the authorship
matrix A. For each review others can use scores from 1 to
6 to indicate the helpfulness of the given reviews and that
we use these to construct the matrix H. We define positive
and negative helpfulness ratings to be {4, 5, 6} and {1, 2, 3},
respectively. Some statistics of the dataset are shown in
Table I. From the table, we can observe that (1) there are

TABLE I
EPINIONS DATASET STATISTICS.

# of Users 233,429
# of Positive Links 717,667
# of Negative Links 123,705
Density of T 7.75× 10−5

# of Reviews 755,722
# of Positive Interactions 12,581,553
# of Negative Interactions 1,086,551
Density of H 1.54× 10−5

Fig. 1. A Global Perspective on Opinion Correlations.

more positive links (or interactions) than negative ones; and
(2) both links and interactions are very sparse. The task
of creating (or receiving) a signed link to others can be
thought of as an explicit form of expressing one’s opinion
of (or from) others. In contrast, when a user interacts with
the content authored by others, they are implicitly marking
their opinion towards others in these interactions. Therefore,
it is reasonable to assume that the implicit and explicit
opinions among users are correlated. Next we investigate
these correlations from both global and local perspectives.

B. A Global Perspective

From a global perspective, we want to examine the corre-
lations between these explicit and implicit opinions from one
user. In particular, we aim to answer the following questions
– (1) is a user, giving more positive (or negative ) links,
likely to give more positively (or negatively) on content from
others? and (2) is a user, receiving more positive (or negative
) links, likely to receive more positive (or negative) opinions
on his/her content? In this work, we refer to giving links
or opinions on content as giving behaviors; while receiving
links or opinions on content as receiving behaviors.

To answer the first question, we group users into three
classes based upon their outgoing links as follows: (1) users
who only have positive outgoing links (76,819 users); (2)
users having only negative outgoing links (7,138 users); and
(3) users who have both positive and negative outgoing
links (11,361 users). Then, we calculate the opinions (or
helpfulness ratings) they gave to content from others for each
group and we plot kernel smoothing density estimation for
each group in Figure 1(a). We note that on average users who
only create positive links also tend to interact more positively
with the content generated by other users as compared to
users who only create negative links. Furthermore, the users
who create both positive and negative links are shown to
express both positive and negative behaviors when examining
their interactions performed on content generated by other



users. Evidence from the figure supports that users who give
more positive (or negative ) links tend to express positively
(or negatively) on content from others.

To answer the second question, we divide users into three
groups based upon their incoming links as follows: (1) users
who only have positive incoming links (52,810 users); (2)
users having only negative incoming links (14,701 users);
and (3) users who have both positive and negative incoming
links (17,090 users). Following the similar procedure, we plot
kernel smoothing density estimation of receiving behaviors
for each group in Figure 1(b). From the figure, we can make
very similar observations for receiving behaviors as giving
behaviors, which lead to a positive answer to the second
question – users, receiving more positive (or negative) links,
are likely to obtain more positive (or negative) opinions on
their content.

C. A Local Perspective

The global perspective in Subsection III-B focuses on
correlations between one user and the remaining network.
In this subsection, we focus on a pair of users and we want
to investigate whether the existence of a positive (or negative)
link for a pair of users makes a difference on how they give
(or receive) opinions on each other’s content. In particular,
for a pair of users ui to uj , we aim to answer – (1) if ui
gives a positive (or negative) link to uj , is ui likely to give
positive (or negative) opinions to content from uj? ; and (2)
if uj receives a positive (or negative) link from ui, is uj
likely to give positive (or negative) opinions to the content
from ui? Note that in this work, we use ui+uj , ui−uj and
ui?uj to denote a positive, negative and no link from ui to
uj .

To answer the first question, we divide all pairs of users
into three groups – (a) positive pairs ui + uj ; (b) negative
pairs ui − uj ; and no-link pairs ui?uj . For each pair in
each group, we calculate the average opinion (or helpfulness
ratings) from ui to the content of uj . We apply kernel
smoothing density estimation for each group and the dis-
tributions are shown in Figure2(a). From the figure, we note
that on average positive pairs have higher helpfulness scores
than no-link pairs, which have higher scores than negative
pairs. Hence, it is quite evident from the figure that if ui
gives a positive (or negative) link to uj , ui is likely to give
positive (or negative) opinions to the content from uj .

Intuitively, if uj receives a positive link from ui, uj is
likely to be friendly to ui, and as a consequence, uj is likely
to give positive opinions to the content of ui. On the other
hand, if uj receives a negative link from ui, uj could do
revenge back and give negative opinions to the content of ui.
We follow a similar procedure of answering the first question
for the second question. The results are demonstrated in
Figure 2. From the figure, we observe that (1) on average,
uj mostly gives positive opinions to the content from those
who give positive links to uj ; while uj mostly gives negative
opinions to the content from those who give negative links to
uj . These observations support that if uj receives a positive

Fig. 2. A Local Perspective on Opinion Correlations.

(or negative) link from ui, then uj is likely to give opinions
being more positive (or negative) to the content from ui.

IV. A FRAMEWORK FOR JOINT LINK AND INTERACTION
POLARITY PREDICTIONS

In Section III, we validated that there exist correlations
between a user’s opinion of other users in regards to the
links they form in signed social networks and the polarities of
the interactions between them. Thus, these findings naturally
lead us to the question of whether this knowledge can
benefit the two prediction tasks that are found in the two
domains; link and interaction polarity prediction. In this
section, we first briefly discuss a basic framework to solve
the two tasks of link and interaction polarity predictions
individually. Then we discuss how to model the opinion
correlations that enable us to have the opinions in one task
power the other. Finally we present our proposed framework
LIP, which directly incorporates these correlations into a joint
optimization algorithm that can infer links and polarities of
interactions jointly.

A. Basic Prediction Models

The low-rank matrix factorization approach has gained
popularity recently and is now being used across various ap-
plications such as link prediction [22], [4] and recommender
systems [23], [21]. In this work, we choose to build the basic
prediction models based on the low-rank matrix factorization
approach.

1) Link Prediction: Let T = {(ui, uj)|Tij 6= 0} be
the set of pairs with links. In terms of the link prediction
task, we would like to find two latent matrices U =
[u1,u2, . . . ,un] ∈ RKL×n and V = [v1,v2, . . . ,vn] ∈
RKL×n ,with KL being the number of latent dimensions,
by solving the following optimization problem:

min
U,V

1

2

∑
(ui,uj)∈T

(Tij − u
>
i vj)

2
+
β1

2

(
‖U‖2F + ‖V‖2F

)
(1)

where ui and vi are the user latent vectors representing
giving and receiving link behaviors of ui, respectively. Thus,
u>i vj models the sign of a link from ui to uj , and therefore
after optimizing the above formulation, we can use such
inner products as a prediction for unknown user-user signed
links in the network. Note that ‖U‖2F denotes the Frobenius
norm of U and is used as a regularization term to prevent
overfitting, similarly for V, and both are controlled by the
parameter β1.



2) Interaction Polarity Prediction: Let H =
{(ui, rk, uj)|Hik 6= 0,Ajk 6= 0} be the set of interaction
triplets and Hik denotes the opinion from ui to the content
rk authored by uj . The main difference between the basic
model for this task from traditional matrix factorization
based recommender systems is that we now have a third
piece of information, the author. Thus, rather than taking the
typical user-item formulation, we instead want to formulate
the model so that we can include information about the
author of the content.

In this problem, we wish to find three latent matrices
P = [p1,p2, . . . ,pn] ∈ RKI×n, Q = [q1,q2, . . . ,qn] ∈
RKI×n, and S = [s1, s2, . . . , sm] ∈ RKI×m, where pi and
qi respectively denote the giving and receiving interaction
behaviors of ui, and sk is the latent vector for content
rk. These three matrices can be obtained via solving the
following optimization problem:

min
P,Q,S

1

2

∑
(ui,rk,uj)∈H

(Hik − p
>
i (qj + sk))

2 (2)

+
β2

2

(
‖P‖2F + ‖Q‖2F + ‖S‖2F

)
the term

(
‖P‖2F + ‖Q‖2F + ‖S‖2F

)
is introduced to avoid

overfitting, which is controlled by β2. Next we will discuss
how to capture correlations based on the two aforementioned
basic models.

B. Modeling Opinion Correlations
In Section III, we found that the giving (or receiving)

behaviors in terms of links and interactions are correlated. In
the basic models from Subsection IV-A.2, we use ui and vi
to denote users’ behaviors when giving and receiving links,
respectively. While we use pi and qi to respectively indicate
users’ behaviors when giving and receiving interactions,
separately. Therefore, we can capture the opinion correlations
by bridging the two giving behaviors via ui and pi, and
the two receiving behaviors via vi and qi. Since the two
giving behaviors are correlated, we can find a linear mapping
matrix WO ∈ RKI×KL that can map ui’s latent vector ui,
which denotes his/her underlying behavior on how to create
links, to the latent vector pi, which captures their behavior
towards how they give opinions to the content authored by
other users in the network. Given a set of latent vectors for
all users ui ∈ U , it can then be easily seen that the linear
mapping between them would be a solution to the following
optimization problem:

min
WO

∑
ui∈U

‖WOui − pi‖22 (3)

Similarly, we seek to find a matrix WI ∈ RKI×KL to rep-
resent the mapping between the user uj’s latent vectors vj ,
and qj , which denote their receiving behaviors of receiving
links and interactions, respectively. The mapping WI can be
learned as follows:

min
WI

∑
uj∈U

‖WIvj − pj‖22 (4)

Eqs. (3) and (4) can capture opinion correlations for links
and interactions. They also allow us to bridge the two basic
models for link and interaction polarity predictions together.
Next we will introduce the proposed joint framework.

C. The Proposed Joint Framework
Now we have formulated a model on how to optimize a

linear mapping between both the giving and receiving be-
haviors in the two tasks. Next we show how these mappings
can be used as two additional terms in our joint matrix
factorization framework, LIP, for the purpose of joint link

and interaction polarity prediction. LIP solves the following
optimization problem:

min
U,V,P,Q,
S,WI ,WO

L(U,V,P,Q,S,WI ,WO)

=
1

2

∑
(ui,uj)∈T

(Tij − u
>
i vj)

2

+
η

2

∑
(ui,rk,uj)∈H

(Hik − p
>
i (qj + sk))

2

+
γ

2

( ∑
ui∈U

‖WOui − pi‖22 +
∑

uj∈U
‖WIvj − qj‖22

)

+
β1

2

(
‖U‖2F + ‖V‖2F

)
+
β2

2

(
‖P‖2F + ‖Q‖2F + ‖S‖2F

)
+
β3

2

(
‖WI‖2F + ‖WO‖2F

)
(5)

where the first term is a standard user-user matrix factor-
ization model (as discussed in Subsection IV-A) for the link
prediction problem. The second term is a modification to the
user-review matrix factorization model that also incorporates
the additional vector qj ∀uj ∈ U to represent the influence
of the author uj in the prediction of ui’s opinion on rk, when
rk was written by uj . The third and fourth terms capture the
correlations of giving and receiving behaviors, respectively,
and their contributions are controlled by a parameter γ. Other
terms in Eq. (5) are added to avoid overfitting.

We note that the balance between optimizing for the two
tasks (sign link prediction and user interactions polarities)
is balanced by the parameter η, where a small increase in
this value will result in an increase to the importance of
the user interaction polarity prediction task, and similarly
towards the link prediction task when decreasing its value.
Also, this transfer of information between problems is done
by the linear mapping used in LIP (more specifically the
terms controlled by γ in Eq. (5) ). If a user ui has no link
information, they are deemed a cold-start user in the link
prediction task. Thus there is no way to learn ui and vi
in the basic model and we fail to do link prediction for
ui. However, if ui has had some interactions with other
users in the network, we can learn pi and qi from his/her
interaction data. Thus, the proposed framework LIP can also
learn ui and vi via the model components of capturing
giving and receiving correlations via the third and fourth
terms in Eq. (5). Similarly, LIP can also help when ui has
no interaction data but has link information. Via the above
analysis, we note that LIP has the potential to mitigate the
data sparsity and cold-start problems in either link prediction
or interaction polarity prediction.

D. An Optimization Method for LIP

Given the the optimization objective shown above, we now
present how to solve this problem. We have chosen to use
stochastic gradient descent (SGD) due to the non-convexity
of the joint optimization formulation. First, we compute the
partial derivatives with respect to each of the parameters (i.e.,
ui,vj ,pi,qj , sk,WO, and WI ) and then iteratively update
them using SGD until convergence. We use the combined
training data X = {T ∪H}, where T and H are the link and
interaction training data, respectively.



V. EXPERIMENTS

In this section, we conduct experiments to answer the fol-
lowing two questions: (1) Can our joint model help alleviate
the sparsity problem in these two prediction tasks? (2) Do the
terms based upon correlated user opinions/behaviors in LIP
provide a transfer of information between the two problems?
To address the first question, we perform experiments in
which we increase the sparsity of the training data and
compare the performance with representative baselines. We
address the second question by examining if our algorithm is
robust to handle some cold-start users. In the next subsection
we will further introduce our dataset and how it was used,
the metric used in evaluating the two prediction tasks, then
we introduce the experimental settings for the two types of
experiments we have performed.

A. Experimental Settings

As mentioned in Section III, we have collected a dataset
from Epinions for these experiments. Note that for the
purpose of this study, we have filtered our collected Epin-
ions dataset to form more dense user-user and user-content
matrices. The first step is to pre-process the data such that
we have the appropriate training, validation, and testing sets
from our dataset.

The filtering we perform only keeps users that have both
given and received a link, and also requires the users to have
given at least one helpfulness rating and have also authored
at least one review that has received at least one helpfulness
rating. For all selected users to be filtered out, we remove
all their user links, reviews they had written, and helpfulness
ratings associated with that user. The reason for this filtering
is that it will allow us to later remove portions of the data to
artificially create training sets that have a varying percentage
of cold start users and also different levels of sparsity.

The original dataset had contained 233,429 users, 841,373
user-user links, and 13,668,105 helpfulness ratings. After the
above mentioned filtering process, we were left with 29,901
users, 600,976 user-user links, and 11,555,599 helpfulness
ratings. The dataset has been randomly split into 70% for
training, 10% for validation, and 20% for testing. Note that
we then balanced our testing dataset to be 50% positive and
50% negative similar to that done in [5]. To evaluate and
compare the performance of LIP, we present the F1 measure
for the interaction polarity and the link prediction tasks. Note
that the higher the value, the better the performance.

For all the models that required parameters to be tuned,
we used the validation set to obtain the best parameters for
each respective model.

B. Sparsity Experiments

To answer the first question, we compare the proposed
framework, LIP, with existing interaction polarity and link
prediction methods. We first present the baselines for the
interaction polarity prediction task followed by those for the
link prediction task.

We choose the following representative interaction polarity
prediction baselines for comparison:

50% 60% 70% 80% 90%
Sparsity Induced
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(a) Interaction Polarity Prediction.
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(b) Link Prediction.
Fig. 3. Results with varied Sparsity Settings.

• uCF: User-based collaborative filtering approach where
we used the five most similar users (in terms of cosine
similarity) based on their helpfulenss rating history for
making the predictions. For details on collaborative
filtering please see [24].

• MF: Our low-rank matrix factorization method as shown
in Eq. (2).

For link prediction, the representative baselines are pre-
sented below and details of the methods can be found in
their respective cited work.
• SSA: A spectral based method using the signed Lapla-

cian matrix [8] and regularized Laplacian kernel [25]
is used. Due to the fact this method was presented
for undirected networks, we convert the directed link
information by making T symmetric, thus resulting in
an undirected network.

• HOC-3: The supervised approach presented in [5] that
is based on extracting 23 features; 16 directed triad
configurations and 7 node related features.

• MF: Low-rank matrix factorization method as shown in
Eq. (1), which was first introduced in [4].

In the first experiment, we are able to simulate a ranging
sparsity across each user, since we have already limited our
attention to a subset of the data that is denser than the original
dataset. We remove x% of the links and interactions for each
user and vary x in {50, 60, 70, 80, 90}.

1) Experimental Results: The interaction polarity predic-
tion results can be found in Figure 3(a). Most of the time,
we see that the baseline MF method outperforms the user-
based collaborative filtering method. Similarly, we have LIP
finding significant gains over MF across the levels of sparsity
induced. Another thing to mention is that since we had first
increased the density of the user-review matrix , it is not
until the 80% sparsity that the density of the network drops
below that of the original matrix H.

We report the results of the sparsity experiments for the
link prediction in Figure 3(b). LIP and MF obtain much
better performance than SSA and HOC-3. We are able to
observe that LIP performs comparable to the MF method
for the lower sparsity settings, but upon reaching the higher
sparsity level, LIP achieves better performance than MF.

From the results in the sparsity experiment, we have seen



LIP’s ability to help alleviate the sparsity problem found in
the interaction polarity and link prediction tasks; thus pro-
viding evidence that our joint framework is able to partially
alleviate the sparsity problem inherent in signed networks.
More specifically, we see a significant improvement in the
interaction polarity predictions, and increasing improvement
for the link prediction with the increase of the sparsity.

C. Cold-Start Experiments

Note that one of the main contributions of this work is the
ability of the framework to handle not just the data sparsity
problem, but also to help alleviate issues that are commonly
faced with cold-start users in signed networks, which are
quite common characteristics in these datasets. Therefore to
answer the second question, we compare LIP with existing
algorithms that are able to handle cold-start users in both of
the two prediction tasks.

For this experiment we want to empirically evaluate the
robustness of LIP when faced with networks having cold-
start users. Note that this is a very difficult problem to
overcome due to the fact if there is no knowledge about
a user in a certain domain, then it becomes difficult, if not
impossible, to make reasonable predictions involving them.
However, since LIP is jointly predicting the signed links and
user interaction polarities, the opinions formulated in one
task can power those in the other task and simultaneously
they should be able to gain information for users that
previously had none in one of the tasks.

Under the cold-start setting, we choose the following user
interaction polarity prediction baselines:
• RG: Random guessing method that predicts polarities

based on the training data class distribution.
• AvgG: The average guessing method (AvgG), first cal-

culates the average interaction value found in the entire
training set, and then predicts that value for all missing
values.

• MFwRG: Typical matrix factorization method, but for
cold-start users we perform random guessing.

We note that the typical matrix factorization method would
not be applicable in this experiment, since if we have no in-
teraction information for a given user, then the latent vectors
of such users would never be updated. This would leave the
predicted value to be assigned based on the inner product of
two randomly initialized vectors. Thus, we modified MF by
adding the condition that if either of the two users’ vectors
have not been updated (i.e., they had no training interaction
data and are therefore a cold-start user), then instead of
using the inner product as we normally would with MF for
predicting links, we instead use the RG method for that given
link.

We compare the proposed framework LIP with the follow-
ing link prediction baselines:
• RG: Randomly guess missing links to be positive or

negative based on training data class distribution.
• MFwRG: This method has the identical extension for

the cold-start users as described in MFwRG for the
interaction polarity prediction task.

TABLE II
INTERACTION POLARITY PREDICTION COLD-START RESULTS.

Method Induced Percent Cold Start Users
5% 10% 15% 20% 25%

RG 0.655 0.655 0.655 0.655 0.655
AvgG 0.667 0.667 0.667 0.667 0.667
MFwRG 0.769 0.764 0.754 0.746 0.739
LIP 0.773 0.771 0.769 0.766 0.763

TABLE III
LINK PREDICTION COLD-START RESULTS.

Method Induced Percent Cold Start Users
5% 10% 15% 20% 25%

RG 0.641 0.641 0.641 0.641 0.640
MFwRG 0.848 0.837 0.825 0.813 0.797
LIP 0.860 0.858 0.853 0.848 0.839

For these experiments, we vary the percentage of users that
become cold start users in a given task, but do not modify the
testing set. We randomly select x% of the users and remove
all their links, then randomly select x% of the users (who
we have not already selected) and remove their interaction
information while varying vary x in {5, 10, 15, 20, 25} .

1) Experimental Results:: Table II holds the results of the
cold-start experiments for the interaction polarity prediction
task when varying the number of cold start users. The very
naive baseline RG is just shown to provide a reference for
the F1 measure, but the MFwRG is expected to perform quite
well. In this table, we are able to observe LIP’s superiority
over the baseline methods when observing cold-start users.
We also see that LIP’s performance as compared to the
baselines drastically increases as the number of cold-start
users increases, which is extremely intuitive based upon the
use of the correlation terms. This is because even if a user
has no current helpfulness rating information, LIP is able to
transfer information (i.e., their opinions) through the linear
mapping matrices WO and WI and use information that the
user had from their link information.

In Table III, we present the link prediction results when
varying the amount of cold-start users in the training set.
Upon seeing these results the advantages of LIP over the
other baseline methods become even more obvious. We
note that whenever MFwRG has the ability to learn a low
dimensional representation for a user, it can then perform the
prediction using it’s learned low dimensional latent vectors.
But when there is no link information for a given user, then
the user must resort to randomly guessing. Similarly to the
interaction polarity prediction task, as the percentage of cold-
start users increases, the performance gap in terms of F1
becomes larger in favor of LIP having the best prediction.

D. Discussions

This leads us back to our second question, where we
set out to determine if the linking terms based upon the
correlated user opinions in LIP are able to provide a transfer
of information between the two tasks that ultimately have
a user’s opinions in one task power the other. Based upon
the results presented in this section, for both the sparsity
and the cold-start experiments, we have shown that indeed
LIP is able to utilize the inherent correlations behind the
opinions expressed in the two tasks to boost the performance
in both the prediction tasks simultaneously. Next we present



(a) User-User Link Prediction. (b) User Interaction Polarity Pre-
diction.

(c) Trade-off between the two tasks
(i.e., mean of (a) and (b)).

Fig. 4. Performance Variations of LIP on the 90% data sparsity experiment w.r.t. η and γ.

our analysis on the parameters of LIP. We seek to not only to
gain a better understanding of the relation between these two
prediction tasks (i.e., η), but perhaps even more important in
this study, is the focus on γ, since it controlled the amount
of opinion information to be transferred from one prediction
task to the other.

E. Parameter Analysis for LIP

The parameters η and γ control the balance between
optimizing the link prediction and user interaction polar-
ity tasks, and how strongly to keep the two tasks low
dimensional representations correlated, respectively. In this
subsection, we perform an analysis on how changing these
two parameters affects the performance of LIP. We first fix all
other parameters (i.e., the regularization parameters β1, β2,
and β3 and dimension sizes KL and KI ) based upon the best
parameters found against our validation set when performing
a grid search over the parameter space. We evaluate the
performance on all paired (η, γ) values while we vary the
value of η as 0.25, 0.5 0.75, 1.0, 1.25 and γ as 0.0001,
0.001, 0.01, 0.1, providing us with 20 possible combinations.
Although the best parameter settings varied between the
two above mentioned experiments, we only display one
representative from the sparsity user experiment, since we
have similar observations in every other experimental setting.
We present the analysis on the 90% sparsity experiment since
it had the most variation in performance across the different
settings.

In Figure 4, we have shown the 3D surfaces for the
mentioned combination of parameters. In Figure 4(a), we
can see that γ = 0.01 is shown to clearly be a good
region for this parameter, as both to the left and right the
performance in terms of F1 drops for the link prediction.
However, there is little to no significant difference between
the link predictions when varying η in the range provided. It
can also be noticed that for the interaction polarity prediction
task (seen in Figure 4(b)) the larger η leads to much better
performance, which intuitively makes sense because a larger
η relates to increasing the weight of how much we were
to optimize the interaction polarity prediction as compared
to the link prediction task. Unlike what we observed in
the link prediction task, the interaction polarity prediction
performs better with a smaller γ; meaning the two tasks
have a different preferred weight to be associated with the
correlation between the user latent vectors.

Finally Figure 4(c) shows that there is a drastic trade-off
between the two tasks. Where if one of the tasks has a large
increase in F1, then the other task becomes slightly worse.

Thus to obtain better performance in both tasks, we would
want to choose a parameter setting such that the trade-off
between the two tasks is balanced. Based on our analysis
such a point would have γ = 0.01, but as for the value of η,
there is not a decisive value to choose. Thus, we have shown
that the balance between optimizing the two tasks is not
very sensitive, although from the figure it appears choosing
η = 0.75 has a slight advantage in both of the two tasks.

VI. RELATED WORK

Although there has been a large number of recent works
focused on signed link prediction and even interaction po-
larity prediction, most of their major drawbacks have been
that they optimized each task one at a time.

Previous work on link prediction in signed networks
can be split into two primary categories; supervised and
unsupervised methods. It was in [5] that the supervised
method, HOC-3, was first introduced. They had used the
social balance theory to derive 16 features based upon the
possible triad configurations and also included 7 additional
node features. Later in [17] HOC-3 was extended to higher
order cycles, and although it obtained slight improvements,
it came at great time complexity costs when the network
size becomes large. Thus, it is not as practical for current
large real-world networks. The first low-rank approximation
method for signed networks was presented in [4], where mul-
tiple methods for matrix completion and matrix factorization
were discussed.

The literature on the interaction polarity prediction is
quite limited in comparison to the classical link prediction
task. It was in [16] that the authors had the objective of
specifically attempting to predict the rating a user would
give the content generated by another user. Unlike our work,
they included information about the content of the reviews
whereas we have only focused on predictions based upon
the network information, although (as mentioned before)
we have left this as a future work to include the content
information as a means to gain even better prediction results.
In [21] they used the interactions for increased performance
in recommendations to the users. This achieved better per-
formance over the classical recommender system approaches
primarily because they had included the role of users rating
reviews as compared to only focusing on the information
present in the reviews made by the user themselves. In [20]
the authors focused on personalized predictions for review
helpfulness were they presented a tensor factorization model.
Note that we did not compare with tensor based factorization
methods due to the fact they require a higher time and



space complexity and instead we had chosen to use matrix
factorization as the base method to extend showing that
the correlation between the two tasks are able to provide
preformance improvements.

VII. CONCLUSION AND FUTURE WORK

In signed networks, users can express their opinions via
two activities, i.e., creating signed links and expressing
opinions on the content from others. Intuitively, the opinions
and behaviors that the users have when performing these
two activities online should be related. We first performed
an analysis to validate the correlations between the signed
links and user interaction polarities from both global and
local perspective. Our results show that indeed there is a
strong relation between the way users behave in expressing
their opinions when performing these two aforementioned
activities. We next proposed a joint optimization framework,
LIP, for the prediction of signed links and interaction po-
larities that was built upon having the opinions in one task
power the other. This novel framework was able to boost the
performance in both prediction tasks when jointly solving
the two problems as compared to separately solving them
individually. The significance becomes even more important
in settings where the social network data is sparse or involves
cold-start users. This is due to the fact that LIP is able
to partially avoid and mitigate these problems since it can
transfer information about users opinions from one problem
to another by capturing the correlations between them. Our
experiments on a real-world signed network have demon-
strated both the effectiveness of LIP and also its robustness
to the data sparsity and cold-start problems.

Future work in this domain will be to seek other problems
that users might have correlated opinions or behaviors that
can be harnessed to increase the performance in multiple
tasks simultaneously. We also would like to investigate the
underlying dynamics in signed networks that are causing
these correlations, or other phenomenon, such as high reci-
procity in some networks and not in others. More specifically
how reciprocity relates to ways in which users express their
opinions and perhaps sometimes even seek revenge.
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