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Abstract
In today’s world, users typically take to online social media to express their opinions, which can inherently be both posi-
tive and negative. In fact, online social networks can be best modeled as signed networks, where opinions in the form of 
positive and negative links can exist between users, such as our friends and foes (e.g., “unfriended” users), respectively. 
Furthermore, users can also express their opinions to content generated by others through online social interactions, such 
as commenting or rating. Intuitively, these two types of opinions in the form of links and interactions should be related. For 
example, users’ interactions are likely to be positive (or negative) to those they have positively (or negatively) established 
links with. Similarly, we tend to establish positive (or negative) links with those whose generated content we frequently 
positively (or negatively) interact with online. Hence, in this paper, we first verify these assumptions by understanding the 
correlation between these two types of opinions from both a local and global perspective. Then, we propose a framework 
that jointly solves the link and interaction polarity prediction problem based on our newly found understanding of how these 
two problems are correlated. We ultimately perform experiments on a real-world signed network to demonstrate the effec-
tiveness of our proposed approach to help mitigate both the data sparsity and cold-start problems found in the two tasks of 
link and interaction polarity prediction.

Keywords Signed networks · Social media · Link prediction · Interaction polarity prediction

1 Introduction

Traditionally, network analysis has focused on unsigned net-
works (or networks with only positive links). Many social 
networks in social media can have positive and negative 
links (or signed networks, Cartwright and Harary 1956; 
Heider 1946). Such examples include the Epinions network 
with trust and distrust and the Slashdot network with friend 
and foe links. Furthermore, many popular social media 
networks can incorporate “unfriending,” “unfollowing,” or 
blocking as negative links, while the currently established 
links can represent positive links (e.g., in Facebook, Twit-
ter, etc.) It has been proven that negative links can advance 
various network analysis tasks such as link prediction (Guha 
et al. 2004; Hsieh et al. 2012; Leskovec et al. 2010a), node 
classification (Tang et al. 2016a), community detection (Chi-
ang et al. 2014; Kunegis et al. 2010; Sharma 2012; Zheng 

and Skillicorn 2015), and recommendations (Forsati et al. 
2014; Ma et al. 2009; Victor et al. 2009, 2013). Meanwhile, 
a recent study has shown that invisible negative links in 
social media are predictable (Tang et al. 2015) and that they 
can help convert many social media unsigned networks such 
as Facebook friendship and Twitter following into signed 
networks. Therefore, signed networks are ubiquitous and 
have attracted increasing attention in recent years (Tang 
et al. 2016b).

Meanwhile, social media has been increasingly used 
by online users to share and exchange opinions. In signed 
networks, users can directly express positive (or negative) 
opinions to others by establishing positive (or negative) 
links. They can also specify positive (or negative) opinions 
to content created by others via various interactions such as 
commenting and rating. These two types of opinions should 
be related inherently. For example, a user receiving more 
positive (or negative) links is likely to receive more posi-
tive (or negative) opinions for his/her content, while users 
are likely to give positive (or negative) opinions to content 
generated by those with positive (or negative) links. In real-
ity, users may also explicitly only give opinions to a small 
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number of users or content. For example, both positive and 
negative links follow a power-law-like distribution—a small 
number of users specify many positive (or negative) links, 
while a large proportion of users specify a few positive (or 
negative) links (Tang et al. 2014). Hence, link prediction 
(Leskovec et al. 2010a) and interaction polarity prediction 
(Tang et al. 2013) are proposed to infer implicit opinions of 
these two types, respectively.

Recent years have witnessed a large number of algorithms 
for signed link prediction (Chiang et al. 2011; Hsieh et al. 
2012; Leskovec et al. 2010a; Symeonidis and Mantas 2013) 
and interaction polarity prediction (Moghaddam et al. 2012, 
2011; Tang et al. 2013; Wang et al. 2015). However, the 
majority of them have tackled these two tasks independently. 
As aforementioned, the corresponding opinions in these two 
tasks could be correlated and we can utilize one to power 
the other. Thus, we could boost the performance by joining 
these two tasks. Meanwhile, due to the sparsity nature of 
social media data, both tasks have been shown to severely 
suffer from the data sparsity and cold-start problems (Chiang 
et al. 2014; Wang et al. 2015). By capturing the correla-
tion between these two types of opinions, one can enrich 
the other and therefore have more information to use for 
their corresponding tasks. Hence, a joint framework has the 
potential to mitigate the data sparsity and cold-start prob-
lems for both tasks.

In this paper, we study the problem of joint link and inter-
action polarity predictions in signed networks. In particular, 
we investigate—(a) whether opinions in the two tasks are 
related? and (b) how to utilize their correlations for joint 
link and interaction polarity predictions? Providing answers 
to these two questions, we propose a novel framework LIP 
that can infer links and polarities of interactions jointly. Our 
main contributions in this work have been summarized as 
follows:

• We validate the correlations between link signs and inter-
action polarities from both global and local perspectives;

• We propose a joint link and interaction prediction frame-
work (LIP) that explicitly incorporates the correlations to 
predict links and interaction polarities simultaneously;

• We conduct experiments in a real-world signed network 
to demonstrate (a) the effectiveness of LIP and (b) the 
robustness of LIP to the data sparsity and cold-start prob-
lems.

When compared with Derr et al. (2018d), in this work, we have 
also: (1) performed a thorough data analysis from both a local 
and global perspective that motivates a joint learning model, 
(2) provided a detailed gradient-based optimization scheme 
for learning our proposed joint framework, which greatly 
improves the reproducibility of this work (along with making 

the code publicly available), (3) conducted further experiments 
investigating the performance when varying the amount of 
induced cold-start users, which we use to further show the 
robustness/effectiveness of LIP, and more specifically, how 
opinion information is able to flow between the two problems 
to show that opinions indeed power opinions and finally (4) 
we have performed a parameter analysis to observe the trade-
offs between the two main hyperparameters of our proposed 
framework.

The rest of this paper is organized as follows. In Sect. 2, 
we formally define the joint prediction problem. In Sect. 3, 
we describe the dataset used in our work, along with our 
analysis of the correlations. We discuss our proposed novel 
joint framework in Sect. 4. In Sect. 5, the experimental 
results and findings are presented. We briefly review related 
work in Sect. 6. Conclusions and future work are given in 
Sect. 7.

2  Problem

Let U = {u1, u2,… , un} denote the set of n users. We rep-
resent signed links between users in an adjacency matrix, 
� ∈ ℝ

n×n , where �ij = 1 if ui creates a positive link to uj , −1 
if ui creates a negative link to uj , and 0 otherwise (i.e., when 
ui has shown no link to uj ). Let R = {r1, r2,… , rm} be the 
set of m content items generated by U . We use � ∈ ℝ

n×m to 
denote the authorship matrix where �ij = 1 if ui creates rj and 
�ij = 0 otherwise. Social media provides multiple ways for 
users to express their opinions to content items generate by 
other users. For example, Facebook and Twitter allow their 
users to comment on content; YouTube provides thumbs-up 
and thumbs-down buttons; and Epinions enables its users 
to rate the helpfulness of the content with scores from 1 
to 6. We use � ∈ ℝ

n×m to denote opinions expressed by U 
to R , where �ik = 1(or − 1) if ui gives a positive (or nega-
tive) opinion to rk and we use �ik = 0 to indicate no explicit 
opinion is expressed from ui to rk . Note that in this paper, we 
define positive (or negative) interactions between ui and uj 
as ui giving positive (or negative) opinions to content items 
generated by uj . In other words, an interaction between users 
is defined as a triplet (ui, rk, uj) where ui expresses opinions 
to rk that was generated by uj.

With the above notations and definitions, our problem is 
stated as follows: given the signed relations � , the author-
ship matrix � and the user-item opinion matrix � , we aim to 
learn a predictor that can infer signed links and interaction 
polarities simultaneously by leveraging � , � and �.

Note that when the content of the item is available, we 
also can utilize the content of R . However, in this paper, we 
focus on leveraging � , � and � and would like to leave the 
problem of exploiting content as one future work.
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3  Data analysis

In this section, we conduct preliminary analysis on the cor-
relation between signed links and interaction polarities. We 
begin by introducing the dataset in our study that can be 
found in our signed network dataset repository (Derr 2020).1

3.1  Dataset

We collected a dataset from Epinions for this investigation. 
Epinions users can give positive and negative links to each 
other, which we use to construct the � matrix. They also can 
write reviews, and we use this data to construct the author-
ship matrix � . For each review, others can use scores from 1 
to 6 to indicate the helpfulness of the given reviews and that 
we use these to construct the matrix � . We define positive 
and negative helpfulness ratings to be {4, 5, 6} and {1, 2, 3} , 
respectively. Some statistics of the dataset are shown in 
Table 1. From the table, we can observe that (1) there are 
more positive links (or interactions) than negative ones and 
(2) both links and interactions are very sparse. The task of 
creating (or receiving) a signed link to others can be thought 
of as an explicit form of expressing one’s opinion of (or 
from) others. In contrast, when a user interacts with the con-
tent authored by others, they are implicitly marking their 
opinion toward others in these interactions. Therefore, it is 
reasonable to assume that the implicit and explicit opinions 
among users are correlated. Next, we investigate these cor-
relations from both global and local perspectives.

3.2  A global perspective

From a global perspective, we want to examine the correla-
tions between these explicit and implicit opinions from one 
user. In particular, we aim to answer the following ques-
tions—(1) is a user, giving more positive (or negative ) links, 
likely to give more positively (or negatively) on content from 
others? and (2) is a user, receiving more positive (or negative 

) links, likely to receive more positive (or negative) opinions 
on his/her content? In this work, we refer to giving links or 
opinions on content as giving behaviors, while receiving 
links or opinions on content as receiving behaviors.

To answer the first question, we group users into three 
classes based upon their outgoing links as follows: (1) users 
who only have positive outgoing links (76,819 users); (2) 
users having only negative outgoing links (7138 users); and 
(3) users who have both positive and negative outgoing links 
(11,361 users). Then, we calculate the opinions (or helpful-
ness ratings) they gave to content from others for each group 
and we plot kernel smoothing density estimation for each 
group in Fig. 1. We note that on average, users who only cre-
ate positive links also tend to interact more positively with 
the content generated by other users as compared to users 
who only create negative links. Furthermore, users who cre-
ate both positive and negative links show a higher variance 
than the only positive and only negative classes and thus are 
more likely to express both positive and negative behaviors 
in their interactions.

To answer the second question, we divide users into three 
groups based upon their incoming links as follows: (1) users 
who only have positive incoming links (52,810 users); (2) 
users having only negative incoming links (14,701 users); 
and (3) users who have both positive and negative incom-
ing links (17,090 users). Following the similar procedure, 
we plot kernel smoothing density estimation of receiving 
behaviors for each group in Fig. 2. From Figs. 1 and 2, we 
can make very similar observations for receiving behaviors 
as giving behaviors, which lead to a positive answer to the 
second question—users, receiving more positive (or nega-
tive) links, are likely to obtain more positive (or negative) 
opinions on their content.

Table 1  Epinions dataset statistics

# of users 233,429
# of positive links 717,667
# of negative links 123,705
Density of � 7.75 × 10−5

# of reviews 755,722
# of positive interactions 12,581,553
# of negative interactions 1,086,551
Density of � 1.54 × 10−5

Fig. 1  Giving behaviors from the global perspective on opinion cor-
relations

1 https ://githu b.com/Tyler sNetw ork/aweso me-signe d-netwo rk-datas 
ets.

https://github.com/TylersNetwork/awesome-signed-network-datasets
https://github.com/TylersNetwork/awesome-signed-network-datasets
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3.3  A local perspective

The global perspective in Sect. 3.2 focuses on correlations 
between one user and the remaining network. In this sub-
section, we focus on a pair of users and we want to inves-
tigate whether the existence of a positive (or negative) link 
for a pair of users makes a difference on how they give (or 
receive) opinions on each other’s content. In particular, for a 
pair of users ui to uj , we aim to answer—(1) if ui gives a posi-
tive (or negative) link to uj , is ui likely to give positive (or 
negative) opinions to content from uj ? and (2) if uj receives a 
positive (or negative) link from ui , is uj likely to give positive 
(or negative) opinions to the content from ui ? Note that in 
this work, we use ui + uj , ui − uj and ui?uj to denote a posi-
tive, negative and no link from ui to uj.

To answer the first question, we divide all pairs of users 
into three groups—(a) positive pairs ui + uj ; (b) negative 
pairs ui − uj ; and no-link pairs ui?uj . For each pair in each 
group, we calculate the average opinion (or helpfulness rat-
ings) from ui to the content of uj . We apply kernel smoothing 
density estimation for each group, and the distributions are 
shown in Fig. 3. From this figure, we note that on average, 
positive pairs have higher helpfulness scores than no-link 
pairs, which have higher scores than negative pairs. Hence, 
it is quite evident from the figure that if ui gives a positive (or 
negative) link to uj , ui is likely to give positive (or negative) 
opinions to the content from uj.

Intuitively, if uj receives a positive link from ui , uj is likely 
to be friendly to ui , and as a consequence, uj is likely to give 
positive opinions to the content of ui . On the other hand, if 
uj receives a negative link from ui , uj could do revenge back 
and give negative opinions to the content of ui . We follow a 
similar procedure of answering the first question for the sec-
ond question. The results are demonstrated in Fig. 4. From 

this figure, we observe that (1) on average, uj mostly gives 
positive opinions to the content from those who give posi-
tive links to uj , while uj mostly gives negative opinions to 
the content from those who give negative links to uj . These 
observations support that if uj receives a positive (or nega-
tive) link from ui , then uj is likely to give opinions being 
more positive (or negative) to the content from ui.

4  A framework for joint link and interaction 
polarity predictions

In Sect.  3, we validated that there exist correlations 
between a user’s opinion of other users in regard to the 
links they form in signed social networks and the polarities 

Fig. 2  Receiving behaviors from the global perspective on opinion 
correlations

Fig. 3  Giving behaviors from the local perspective on opinion corre-
lations

Fig. 4  Receiving behaviors from the local perspective on opinion cor-
relations
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of the interactions between them. Thus, these findings nat-
urally lead us to the question of whether this knowledge 
can benefit the two prediction tasks that are found in the 
two domains: link and interaction polarity prediction. In 
this section, we first briefly discuss a basic framework to 
solve the two tasks of link and interaction polarity pre-
dictions individually. We then discuss how to model the 
opinion correlations that enable us to have the opinions in 
one task power the other. Finally, we present our proposed 
framework LIP, which directly incorporates these corre-
lations into a joint optimization algorithm that can infer 
links and polarities of interactions jointly.

4.1  Basic prediction models

The low-rank matrix factorization approach has gained 
popularity recently and is now being used across various 
applications such as link prediction (Agrawal et al. 2013; 
Hsieh et al. 2012) and recommender systems (Forsati et al. 
2015; Wang et al. 2015). In this work, we choose to build 
the basic prediction models based on the low-rank matrix 
factorization approach.

4.1.1  Link prediction

Let T = {(ui, uj) | �ij ≠ 0} be the set of pairs with links. 
In terms of the link prediction task, we would like to 
find two latent matrices � = [�1, �2,… , �n] ∈ ℝ

KL×n and 
� = [�1, �2,… , �n] ∈ ℝ

KL×n ,with KL being the number of 
latent dimensions, by solving the following optimization 
problem:

where �i and �i are the user latent vectors representing giv-
ing and receiving link behaviors of ui , respectively. Thus, 
�⊤
i
�j models the sign of a link from ui to uj , and therefore, 

after optimizing the above formulation, we can use such 
inner products as a prediction for unknown user-user signed 
links in the network. Note that ‖�‖2

F
 denotes the Frobenius 

norm of � and is used as a regularization term to prevent 
overfitting, similarly for � , and both are controlled by the 
parameter �1.

4.1.2  Interaction polarity prediction

Let H = {(ui, rk, uj) | �ik ≠ 0,�jk ≠ 0} be the set of inter-
action triplets and �ik denotes the opinion from ui to the 
content rk authored by uj . The main difference between the 
basic models for this task from traditional matrix factor-
ization-based recommender systems is that we now have 
a third piece of information, the author. Thus, rather than 

(1)min
�,�

1

2

�

(ui,uj)∈T

(�ij − �⊤
i
�j)

2 +
𝛽1

2

�
‖�‖2

F
+ ‖�‖2

F

�

taking the typical user-item formulation, we instead want 
to formulate the model so that we can include information 
about the author of the content.

In this problem, we wish to find three latent matrices 
� = [�1, �2,… , �n] ∈ ℝ

KI×n , � = [�1, �2,… , �n] ∈ ℝ
KI×n 

and � = [�1, �2,… , �m] ∈ ℝ
KI×m , where �i and �i, respec-

tively, denote the giving and receiving interaction behaviors 
of ui , and �k is the latent vector for content rk . One way to 
represent this would be to ignore the author and want �⊤

i
�k to 

model the interaction between user ui on content rk that was 
authored by uj . Similarly, we could ignore the content and 
only use the author, i.e., �⊤

i
�j , but each of these is lacking 

information. Hence, we propose to use �⊤
i
(�j + �k) , which 

includes both the context of the author and the content itself. 
These three matrices can be obtained via solving the follow-
ing optimization problem:

where the term 
�
‖�‖2

F
+ ‖�‖2

F
+ ‖�‖2

F

�
 is introduced to 

avoid overfitting, which is controlled by �2 . Note that another 
way of modeling could be to linearly combine the author 
and content representation. In that way, we could define 
� ∈ ℝ

KI×2KI with �i(�(�j||�k)) , where || is used to denote 
concatenation. However, this would add extra complexity by 
needing to learn � , so we use �⊤

i
(�j + �k) , and leave other 

formulations as future work. Next, we will discuss how to 
capture correlations based on the two aforementioned basic 
models.

4.2  Modeling opinion correlations

In Sect. 3, we found that the giving (or receiving) behav-
iors in terms of links and interactions are correlated. In the 
basic models from Sect. 4.1.2, we use �i and �i to denote 
users’ behaviors when giving and receiving links, respec-
tively. While we use �i and �i to, respectively, indicate users’ 
behaviors when giving and receiving interactions, sepa-
rately. Therefore, we can capture the opinion correlations 
by bridging the two giving behaviors via �i and �i , and the 
two receiving behaviors via �i and �i.

Since the two giving behaviors are correlated, we can 
find a linear mapping matrix �O ∈ ℝ

KI×KL that can map ui ’s 
latent vector �i , which denotes his/her underlying behavior 
on how to create links, to the latent vector �i , which captures 
their behavior toward how they give opinions to the content 
authored by other users in the network. Given a set of latent 
vectors for all users ui ∈ U , it can then be easily seen that 
the linear mapping between them would be a solution to the 
following optimization problem:

(2)

min
�,�,�

1

2

�

(ui,rk ,uj)∈H

(�ik − �⊤
i
(�j + �k))

2

+
𝛽2

2

�
‖�‖2

F
+ ‖�‖2

F
+ ‖�‖2

F

�
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Similarly, we seek to find a matrix �I ∈ ℝ
KI×KL to rep-

resent the mapping between the user uj ’s latent vectors �j 
and �j , which denote their receiving behaviors of receiving 
links and interactions, respectively. The mapping �I can be 
learned as follows:

Equations (3) and (4) can capture opinion correlations for 
links and interactions. They also allow us to bridge the 
two basic models for link and interaction polarity predic-
tions together. Next, we will introduce the proposed joint 
framework.

4.3  The proposed joint framework

Now, we have formulated a model on how to optimize a 
linear mapping between both the giving and receiving 
behaviors in the two tasks. Next, we show how these map-
pings can be used as two additional terms in our joint matrix 
factorization framework, LIP, for the purpose of joint link 
and interaction polarity prediction. LIP solves the following 
optimization problem:

where the first term is a standard user-user matrix factoriza-
tion model (as discussed in Sect. 4.1) for the link prediction 
problem. The second term is a modification to the user-
review matrix factorization model that also incorporates the 
additional vector �j ∀uj ∈ U to represent the influence of the 
author uj in the prediction of ui ’s opinion on rk , when rk was 
written by uj . The third and fourth terms capture the corre-
lations of giving and receiving behaviors, respectively, and 

(3)min
��

∑

ui∈U

‖‖�O�i − �i
‖‖
2

2

(4)min
��

∑

uj∈U

‖‖‖�I�j − �j
‖‖‖
2

2

(5)

min
�,�,�,�,

�,�I ,�O

L(�,�,�,�, �,�I ,�O)

=
1

2

�

(ui,uj)∈T

(�ij − �⊤
i
�j)

2

+
𝜂

2

�

(ui,rk ,uj)∈H

(�ik − �⊤
i
(�j + �k))

2

+
𝛾

2

��

ui∈U

���O�i − �i
��
2

2
+
�

uj∈U

����I�j − �j
���
2

2

�

+
𝛽1

2

�
‖�‖2

F
+ ‖�‖2

F

�
+

𝛽2

2

�
‖�‖2

F
+ ‖�‖2

F
+ ‖�‖2

F

�

+
𝛽3

2

�
���I

��
2

F
+ ���O

��
2

F

�

their contributions are controlled by a parameter � . Other 
terms in Eq. (5) are added to avoid overfitting.

We note that the balance between optimizing for the two 
tasks (sign link prediction and user interactions polarities) is 
balanced by the parameter � , where a small increase in this 
value will result in an increase to the importance of the user 
interaction polarity prediction task, and similarly toward the 
link prediction task when decreasing its value. Also, this trans-
fer of information between problems is done by the linear map-
ping used in LIP. [More specifically, the terms controlled by 
� in Eq. (5).] If a user ui has no link information, they are 
deemed a cold-start user in the link prediction task. Thus, there 
is no way to learn �i and �i in the basic model and we fail to do 
link prediction for ui . However, if ui has had some interactions 
with other users in the network, we can learn �i and �i from 
his/her interaction data. Thus, the proposed framework LIP 
can also learn �i and �i via the model components of capturing 
giving and receiving correlations via the third and fourth terms 
in Eq. (5). Similarly, LIP can also help when ui has no interac-
tion data but has link information. Via the above analysis, we 
note that LIP has the potential to mitigate the data sparsity 
and cold-start problems in either link prediction or interaction 
polarity prediction.

4.4  An optimization method for LIP

Given the optimization objective shown above, we now pre-
sent how to solve this problem. We have chosen to use sto-
chastic gradient descent (SGD) due to the non-convexity of 
the joint optimization formulation. First, we compute the par-
tial derivatives with respect to each of the parameters (i.e., 
�i, �j, �i, �j, �k,�O and �I ) and then iteratively update them 
using SGD until convergence. We use the combined training 
data X = {T ∪H} , where T  and H are the link and interaction 
training data, respectively.

For simplicity in the below, let e�ij
= (�ij − �⊤

i
�j) be the 

error of estimating the link (which in some social networks, 
such as Epinions, can represent trust–distrust) from user ui to 
user uj , e�ikj

= (�ik − �⊤
i
(�j + �k)) be the error of estimating 

the interaction value user ui gave to content rk that had been 
authored by user uj , eO = (�O�i − �i) be the error for our 
linear mapping from user ui ’s latent vector �i (representing the 
way they give links) to their latent vector �i (representing how 
they interact with content created by others), and finally, we 
denote eI = (�I�j − �j) be the error for our linear mapping 
from user uj ’s latent vector �j (representing the way they 
receive links) to their latent vector �j (representing how the 
content they had authored receives interactions).

Gradients of L with respect to � and � The gradients of Eq. 
(5) w.r.t. �i and �j are as follows, respectively:
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Gradients of L with respect to � , � and � The gradients of 
Eq. (5) w.r.t. �i , �j and �k are the following, respectively:

Gradients of L with respect to �O and �I Finally, we pre-
sent the gradients of Eq. (5) w.r.t. �O and �I , which are 
shown below, in respective order.

With update rules to optimize Eq. (5), we use SGD to 
optimize the framework using the combined training data 
X = {T ∪H} , where T  and H are the link and interaction 
training data, respectively. Note that although there are addi-
tional methods for optimizing matrix factorization-based 
methods, SGD has been shown to be both efficient and easy 
to tune, e.g., adaptive learning rates.

With gradients calculated above to optimize Eq. (5), the 
detailed optimization algorithm is presented in Algorithm 1. 
Next, we briefly introduce Algorithm 1. In line 1, we ran-
domly initialize model parameters. In line 2, the learning 
data include links and interactions. From line 3 to line 14, 
we use stochastic gradient descent to optimize the frame-
work. In particular, for each iteration, we first shuffle the 
data in line 4 and then update model parameters using gradi-
ent descent methods from line 5 to line 12. When having a 
signed user-user link training example, the algorithm utilizes 
lines 6 through 8 to calculate the gradients, as compared to 
when having an interaction training example, lines 9 through 
11 are used. Then, on line 12, the model parameters for the 
respective part of the problem (based on whether we are 
updating on a signed link or interaction) can be updated 
using a gradient-based method.
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Algorithm 1: The optimization method for
the proposed framework LIP.
Input: T = {(ui, uj)|Tij = 0} be the set of pairs

with links and
H = {(ui, rk, uj)|Hik = 0,Ajk = 0} be the
set of interaction triplets

Output: U and V for link predictions; and P,Q,
and S for interaction polarity predictions

1 Randomly initialize U,V,P,Q,S,WO,WI

2 Construct the learning data set X = {T ∪ H}
3 while Not convergent do
4 Shuffle(X )
5 foreach x ∈ X do
6 if x ∈ T then
7 Calculate gradients of

L(U,V,P,Q,S,WI ,WO) w.r.t.
ui,vj ,WI , and WO

8 end
9 if x ∈ H then

10 Calculate gradients of
L(U,V,P,Q,S,WI ,WO) w.r.t.
pi,qj , sk,WI , and WO

11 end
12 Update the respective parameters using

gradient descent methods
13 end
14 end

5  Experiments

In this section, we conduct experiments to answer the fol-
lowing two questions: (1) Can our joint model help alleviate 
the sparsity problem in these two prediction tasks? (2) Do 
the terms based upon correlated user opinions/behaviors in 
LIP provide a transfer of information between the two prob-
lems? To address the first question, we perform experiments 
in which we increase the sparsity of the training data and 
compare the performance with representative baselines. We 
address the second question by examining whether our algo-
rithm is robust to handle some cold-start users. In the next 
subsection, we will further introduce our dataset and how it 
was used, the metric used in evaluating the two prediction 
tasks, and then, we introduce the experimental settings for 
the two types of experiments we have performed.

5.1  Experimental settings

As mentioned in Sect. 3, we have collected a dataset from 
Epinions for these experiments. Note that for the purpose of 
this study, we have filtered our collected Epinions dataset to 
form more dense user-user and user-content matrices. The 
first step is to preprocess the data such that we have the 
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appropriate training, validation and testing sets from our 
dataset.

The filtering we perform only keeps users that have both 
given and received a link and also requires the users to have 
given at least one helpfulness rating and have also authored 
at least one review that has received at least one helpfulness 
rating. For all selected users to be filtered out, we remove 
all their user links, reviews they had written and helpful-
ness ratings associated with that user. The reason for this 
filtering is that it will allow us to later remove portions of 
the data to artificially create training sets that have a vary-
ing percentage of cold-start users and also different levels 
of sparsity and therefore seemingly becoming more similar 
to the raw dataset.

The original dataset had contained 233,429 users, 
841,373 user-user links and 13,668,105 helpfulness ratings. 
After the above-mentioned filtering process, we were left 
with 29,901 users, 600,976 user-user links and 11,555,599 
helpfulness ratings. The dataset has been randomly split into 
70% for training, 10% for validation and 20% for testing. 
Note that we then balanced our testing dataset to be 50% 
positive and 50% negative similar to that done in Leskovec 
et al. (2010a).

To evaluate and compare the performance of LIP,2 we 
present the F1 measure for the interaction polarity and the 
link prediction tasks. Note that the higher the value, the bet-
ter the performance. F1 measure (the harmonic mean of pre-
cision and recall) is formally defined as follows:

For all the models that required parameters to be tuned, we 
used the validation set to obtain the best parameters for each 
respective model.

Also, the parameter settings for each experiment was 
fixed (e.g., all LIP results for the five varying cold-start 
experiments were selected based on a commonly “good” 
set of parameters for all five percentages, and not separately 
for each of the five). However, between the two experi-
ments, we allowed for different parameters as the dynamics 
of cold-start users and varying the amount of induced spar-
sity required a different set of parameters for our model and 
similarly for the baselines.

5.2  Sparsity experiments

To answer the first question, we compare the proposed 
framework, LIP, with existing interaction polarity and link 
prediction methods. We first present the baselines for the 

F1 = 2 ×
precision × recall

precision + recall

interaction polarity prediction task followed by those for the 
link prediction task.

We choose the following representative interaction polar-
ity prediction baselines for comparison:

• uCF User-based collaborative filtering approach where 
we used the five most similar users (in terms of cosine 
similarity) based on their helpfulness rating history for 
making the predictions. For details on collaborative fil-
tering, please see Su and Khoshgoftaar (2009). We use 
the user-based collaborative filtering approach as our 
first baseline for predicting the user interaction polari-
ties. Here, we present the results where we used the five 
most similar users (in terms of cosine similarity) based 
on their helpfulness rating history for making the predic-
tions.

• MF Our low-rank matrix factorization method as shown 
in Eq. (2). Here, a comparison is made with the low-rank 
matrix factorization method that attempts to find a lower-
dimensional representation of the user-review matrix. 
Note this follows the same formulation as that in Eq.(2) 
where we use the matrices �,�, � and � equivalently as 
they are in LIP for the predictions.

For link prediction, the representative baselines are pre-
sented below and details of the methods can be found in 
their respective cited work.

• SSA A spectral-based method using the signed Lapla-
cian matrix (Kunegis et al. 2010) and regularized Lapla-
cian kernel (Ito et al. 2005) is used. Due to the fact that 
this method was presented for undirected networks, we 
convert the directed link information by making � sym-
metric, thus resulting in an undirected network, we use 
the undirected version of the dataset by removing the 
directions of the links, but keep the testing set the same.

• HOC-3 It is an approach that was based on the social 
balance and status theories (Leskovec et  al. 2010b). 
Features for a supervised approach are extracted from 
triads and also node features (e.g., number of incoming 
positive edges). A total of 23 features are created based 
on 16 possible directed triad configurations and seven 
node features. The details of this method can be found in 
Leskovec et al. (2010a).

• MF Low-rank matrix factorization method as shown in 
Eq. (1), which was first introduced in Hsieh et al. (2012). 
The final comparison is with the low-rank matrix fac-
torization method, which was first introduced for this 
problem in Hsieh et al. (2012). This is the natural base-
line predictor for our model since LIP is built upon this 
MF technique. This method optimizes the squared error, 
has the regularization parameter � and uses SGD. We 
note that it is formulated just as shown in Eq.(1) and the 2 https ://githu b.com/Tyler sNetw ork/link-inter actio n-polar ity.

https://github.com/TylersNetwork/link-interaction-polarity
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matrices �,� and � are used equivalently to those found 
in LIP.

In the first experiment, we are able to simulate a ranging 
sparsity across each user, since we have already limited our 
attention to a subset of the data that is denser than the origi-
nal dataset. We remove x% of the links and interactions for 
each user and vary x in {50, 60, 70, 80, 90}. we are able to 
simulate a ranging sparsity across each user. We vary the 
sparsity of the dataset by removing 50–90% of the data, in 
increments of 10%.

5.2.1  Experimental results

The interaction polarity prediction results can be found 
in Fig. 5a. Most of the times, we see that the baseline MF 
method outperforms the user-based collaborative filtering 
method. Similarly, we have LIP finding significant gains 
over MF across the levels of sparsity induced. Another thing 
to mention is that since we had first increased the density of 
the user-review matrix, it is not until the 80% sparsity that 
the density of the network drops below that of the original 
matrix � . Therefore, in fact at 80% sparsity, the density of 
this induced sparse network is quite similar to that of the 
original network. We report the results of the sparsity experi-
ments for the link prediction in Fig. 5b. LIP and MF obtain 
much better performance than SSA and HOC-3. We are able 
to observe that LIP performs comparable to the MF method 
for the lower sparsity settings, but upon reaching the higher 
sparsity level, LIP achieves better performance than MF.

From the results in the sparsity experiment, we have seen 
LIP’s ability to help alleviate the sparsity problem found in 
the interaction polarity and link prediction tasks, thus pro-
viding evidence that our joint framework is able to partially 
alleviate the sparsity problem inherent in signed networks. 
More specifically, we see a significant improvement in the 
interaction polarity predictions and increasing improvement 
for the link prediction with the increase in the sparsity.

5.3  Cold‑start experiments

Note that one of the main contributions of this work is the 
ability of the framework to handle not just the data sparsity 
problem, but also to help alleviate issues that are commonly 
faced with cold-start users in signed networks, which are 
quite common characteristics in these datasets. Therefore, to 
answer the second question, we compare LIP with existing 
algorithms that are able to handle cold-start users in both of 
the two prediction tasks.

For this experiment, we want to empirically evaluate the 
robustness of LIP when faced with networks having cold-
start users. Note that this is a very difficult problem to over-
come due to the fact if there is no knowledge about a user in 
a certain domain, then it becomes difficult, if not impossible, 
to make reasonable predictions involving them. However, 
since LIP is jointly predicting the signed links and user 
interaction polarities, the opinions formulated in one task 
can power those in the other task and simultaneously they 
should be able to gain information for users that previously 
had none in one of the tasks.

Under the cold-start setting, we choose the following user 
interaction polarity prediction baselines:

• RG The random guessing method for user interactions 
first calculates the class distributions and then selects 
randomly based on that distribution to make predictions 
for unknown values.

• AvgG The average guessing method (AvgG) first calcu-
lates the average interaction value found in the entire 
training set, next it predicts that value for all missing 
values and then it predicts that same value for all other 
edges in the network that have yet to be assigned.

• MFwRG We note that the typical matrix factorization 
method would not be applicable in this experiment, since 
if we have no training information for a given user, then 
the latent vectors of such users would never be updated. 
Thus, this would leave the predicted value to be assigned 
based on the dot product of two randomly initialized vec-
tors. So instead we modify MF by adding the condition 
that if either of the two users’ vectors have not been 
updated (i.e., they had no data in the training set and 
thus are a cold-start user), then instead of using the dot 

Fig. 5  Experimental results with varied sparsity settings
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product as we normally would with MF for predicting 
links, we instead use the RG method for the given link.

We note that the typical matrix factorization method would 
not be applicable in this experiment, since if we have no 
interaction information for a given user, then the latent vec-
tors of such users would never be updated. This would leave 
the predicted value to be assigned based on the inner prod-
uct of two randomly initialized vectors. Thus, we modified 
MF by adding the condition that if either of the two users’ 
vectors have not been updated (i.e., they had no training 
interaction data and are therefore a cold-start user), then 
instead of using the inner product as we normally would 
with MF for predicting links, we instead use the RG method 
for that given link.

We compare the proposed framework LIP with the fol-
lowing link prediction baselines:

• RG Randomly guess missing links to be positive or nega-
tive based on training data class distribution.

• MFwRG This method has the identical extension for the 
cold-start users as described in MFwRG for the interac-
tion polarity prediction task.

For these experiments, we vary the percentage of users that 
become cold-start users in a given task, but do not modify 
the testing set. We randomly select x% of the users and 
remove all their links and then randomly select x% of the 
users (who we have not already selected) and remove their 
interaction information while varying x in {5, 10, 15, 20, 
25}, i.e., the number of cold-start users from 5% of the train-
ing dataset users to 25%, in intervals of 5%, thus making five 
data subsets.

5.3.1  Experimental results

Table 2 holds the results of the cold-start experiments for 
the interaction polarity prediction task when varying the 
number of cold-start users. The very naive baseline RG is 
just shown to provide a reference for the F1 measure, but 
the MFwRG is expected to perform quite well. In this table, 
we are able to observe LIP’s superiority over the baseline 

methods when observing cold-start users. We also see that 
LIP’s performance as compared to the baselines drastically 
increases as the number of cold-start users increases, which 
is extremely intuitive based upon the use of the correlation 
terms. This is because even if a user has no current helpful-
ness rating information, LIP is able to transfer information 
(i.e., their opinions) through the linear mapping matrices 
�O and �I and use information that the user had from their 
link information.

In Table 3, we present the link prediction results when 
varying the amount of cold-start users in the training set. 
Upon seeing these results, the advantages of LIP over the 
other baseline methods become even more obvious. We note 
that whenever MFwRG has the ability to learn a low-dimen-
sional representation for a user, it can then perform the pre-
diction using its learned low-dimensional latent vectors. But 
when there is no link information for a given user, the user 
must resort to randomly guessing. Similarly to the interac-
tion polarity prediction task, as the percentage of cold-start 
users increases, the performance gap in terms of F1 becomes 
larger in favor of LIP having the best prediction.

5.4  Discussions

This leads us back to our second question, where we set out 
to determine whether the linking terms based upon the cor-
related user opinions in LIP are able to provide a transfer 
of information between the two tasks that ultimately have a 
user’s opinion in one task power the other. Based upon the 
results presented in this section, for both the sparsity and the 
cold-start experiments, we have shown that indeed, LIP is 
able to utilize the inherent correlations behind the opinions 
expressed in the two tasks to boost the performance in both 
the prediction tasks simultaneously. Next, we present our 
analysis on the parameters of LIP. We seek to not only to 
gain a better understanding of the relation between these two 
prediction tasks (i.e., � ), but perhaps even more important 
in this study, and is the focus on � , since it controlled the 
amount of opinion information to be transferred from one 
prediction task to the other, specifically the ones that control 
the correlation terms and the balance between optimizing 
the interaction polarity prediction task along with the link 
prediction task.

Table 2  Interaction polarity prediction cold-start results

Method Induced percent cold-start users

5% 10% 15% 20% 25%

RG 0.655 0.655 0.655 0.655 0.655
AvgG 0.667 0.667 0.667 0.667 0.667
MFwRG 0.769 0.764 0.754 0.746 0.739
LIP 0.773 0.771 0.769 0.766 0.763

Table 3  Link prediction cold-start results

Method Induced percent cold-start users

5% 10% 15% 20% 25%

RG 0.641 0.641 0.641 0.641 0.640
MFwRG 0.848 0.837 0.825 0.813 0.797
LIP 0.860 0.858 0.853 0.848 0.839



Social Network Analysis and Mining           (2020) 10:18  

1 3

Page 11 of 14    18 

Based on the above experimental results, we have suc-
cessfully verified our claim that our joint matrix factoriza-
tion model uses additional terms for modeling the fact that 
users in social networks express their opinions in correlated 
ways across tasks when faced with sparse datasets. However, 
the most obvious claim we are now able to express is that 
LIP does indeed help alleviate the cold-start problem over 
the baseline MF method and the other baselines. In the next 
subsection, we perform a parameter analysis to gain a better 
understanding to not only the relation between these two 
prediction tasks (i.e., � ), but perhaps more important in this 
study and is the focus on � , since it controlled the amount of 
opinion information to be transferred from one prediction 
task to the other.

5.5  Parameter analysis for LIP

First, we will discuss the hyperparameters used in LIP. 
Thereafter, we discuss an analysis on some of the important 
hyperparameters in our model.

In this work, �1 , �2 and �3 are used as the typical regu-
larization hyperparameters and we noticed they behave 
normally. In fact, they could be collapsed into a single reg-
ularization hyperparameter � without much change to the 
performance (as compared to splitting them into three sepa-
rate hyperparameters). The other hyperparameters are quite 
necessary and typical for joint modeling (and similarly for 
cross-domain recommendation problems). For �, this is used 
to balance between the two tasks, which is assumed to result 
in large changes in performance when varying this hyper-
parameter greatly. This is because it controls to what extend 
the optimization is favoring higher performance (perhaps 
at the cost of the other) for one of the two problems over 
the other. As for � , we have introduced this as a Lagrange 
multiplier used to solve this challenging optimization prob-
lem. In other words, based on our analysis, it appears there 
should be a transformation between the two domains of 
links and interactions, and to solve this problem, we have 
relaxed this constraint of finding such a mapping to instead 
find a mapping with minimal error (since we also assume 

the data is noisy). Hence, we introduce the hyperparameter 
� to solve the optimization problem. Finally, we have KL and 
KI that denote the length of the representations in the link 
and interaction domains, respectively. These are the typi-
cal hyperparameters for embedding-based methods, and we 
have observed similar results as other methods that vary the 
embedding, i.e., the performance starts to increase, but then 
drops once the embedding becomes too large. Next, we will 
discuss an analysis on � and � as these are the most interest-
ing hyperparameters of LIP.

The parameters � and � control the balance between opti-
mizing the link prediction and user interaction polarity tasks, 
and how strongly to keep the two tasks low-dimensional 
representations correlated, respectively. In this subsection, 
we perform an analysis on how changing these two param-
eters affects the performance of LIP. We first fix all other 
parameters (i.e., the regularization parameters �1, �2 and �3 
and dimension sizes KL and KI ) based upon the best param-
eters found against our validation set when performing a 
grid search over the parameter space. We evaluate the per-
formance on all paired (�, �) values, while we vary the value 
of � as 0.25, 0.5 0.75, 1.0, 1.25 and � as 0.0001, 0.001, 0.01, 
0.1, providing us with 20 possible combinations for running 
the grid search. Although the best parameter settings varied 
between the two above-mentioned experiments, we only dis-
play one representative from the sparsity user experiment, 
since we have similar observations in every other experi-
mental setting. We present the analysis on the 90% sparsity 
experiment since it had the most variation in performance 
across the different settings.

In Fig. 6, we have shown the 3D surfaces for the men-
tioned combination of parameters. In Fig. 6a, we can see 
that � = 0.01 is shown to clearly be a good region for this 
parameter, as both to the left and right, the performance in 
terms of F1 drops for the link prediction. However, there is 
little to no significant difference between the link predictions 
when varying � in the range provided. It can also be noticed 
that for the interaction polarity prediction task (as shown 
in Fig. 6b), the larger � leads to much better performance, 
which intuitively makes sense because a larger � relates to 

Fig. 6  Performance variations in LIP on the 90% data sparsity experiment w.r.t. � and �
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increasing the weight of how much we were to optimize the 
interaction polarity prediction as compared to the link pre-
diction task. Unlike what we observed in the link prediction 
task, the interaction polarity prediction performs better with 
a smaller � , meaning the two tasks have a different preferred 
weight to be associated with the correlation between the user 
latent vectors.

Finally, Fig. 6c shows that there is a drastic trade-off 
between the two tasks. Where if one of the tasks has a large 
increase in F1, then the other task becomes slightly worse. 
Thus, to obtain better performance in both tasks, we would 
want to choose a parameter setting such that the trade-off 
between the two tasks is balanced. Based on our analysis, 
such a point would have � = 0.01 , but as for the value of � , 
there is not a decisive value to choose. Thus, we have shown 
that the balance between optimizing the two tasks is not 
very sensitive, although from the figure, it appears choos-
ing � = 0.75 has a slight advantage in both of the two tasks.

6  Related work

In this section, we present and discuss related work on 
signed networks, link prediction and interaction polarity 
predictions.

While some problems such as community detection (Chi-
ang et al. 2014; Kunegis et al. 2010; Sharma 2012; Zheng 
and Skillicorn 2015) and centrality (Kunegis et al. 2009; Wu 
et al. 2016) have been extensively investigated, other direc-
tions such as network modeling (Li et al. 2018; Derr et al. 
2018b), node relevance (Derr et al. 2018c; Wan et al. 2019) 
and network embedding (Wang et al. 2017; Derr and Ma 
2018) are still in early development (Tang et al. 2016b) and 
many of their drawbacks have been that they are optimized 
each task one at a time.

Previous work on link prediction in signed networks 
can be split into two primary categories: supervised and 
unsupervised methods. The first of which formulates link 
prediction into a classification problem, having the existing 
positive and negative links as the labels and constructing 
features for each node and/or link. The unsupervised meth-
ods, however, can be further categorized into methods based 
on similarity (Javari and Jalili 2014; Symeonidis and Tiakas 
2014) , propagation (Guha et al. 2004; Ziegler and Lausen 
2005) and low-rank approximation (Agrawal et al. 2013; Cen 
et al. 2013; Hsieh et al. 2012).

It was in Leskovec et al. (2010a) that the supervised 
method, HOC-3, was first introduced. They had used the 
social balance theory to derive 16 features based upon 
the possible triad configurations and also included seven 
additional node features. Later in Chiang et  al. (2011), 
HOC-3 was extended to higher-order cycles, and although 
it obtained slight improvements, it came at great time 

complexity costs when the network size becomes large, as 
compared to just local triads. Although they were able to 
have slight improvements in their predictions, it came at 
great time complexity cost for collecting the features as the 
network size becomes large. Thus, it is not as practical for 
current large real-world networks. The first low-rank approx-
imation method for signed networks was presented in Hsieh 
et al. (2012), where multiple methods for matrix completion 
and matrix factorization were discussed, in which the later 
could be solved using either ALS or SGD and discussed 
multiple loss functions that could be interchanged (e.g., 
square hinge).

A more recent trend in signed network analysis is the 
use of advanced signed network embedding techniques. The 
specific goal of signed network embedding is to learn a set of 
vector representations that can be used in many tasks such as 
link prediction (Bhowmick et al. 2019; Lu et al. 2019; Islam 
et al. 2018), node classification (Bhowmick et al. 2019) and 
even visualization (Bhowmick et al. 2019). Most previous 
works have focused on representation learning (i.e., network 
embedding) for unsigned networks (Zhang et al. 2018) with 
a recent trend in using deep learning on graphs—graph neu-
ral networks (GNNs) (Wu et al. 2019). More recently graph 
convolutional networks (GCNs) (Hamilton et al. 2017; Kipf 
and Welling 2016) are a type of GNN that has been extended 
to signed network embedding (Huang et al. 2019; Derr and 
Ma 2018). We note that none of these methods are capable 
of handing the joint learning in their current state, but our 
framework could easily be modified from matrix factoriza-
tion to another form of learning the embeddings, such as a 
signed network GNN.

The literature on the interaction polarity prediction is 
quite limited in comparison with the number of methods 
proposed for the classical link prediction task. It was in Tang 
et al. (2013) that the authors had the objective of specifically 
attempting to predict the rating a user would give the content 
generated by another user. Unlike our work, they included 
information about the content of the reviews, whereas we 
have only focused on predictions based upon the network 
information, although (as mentioned before) we have left 
this as a future work to include the content information as a 
means to gain even better prediction results. In Wang et al. 
(2015), they used the interactions for increased performance 
in recommendations to the users. This achieved better per-
formance over the classical recommender system approaches 
primarily because they had included the role of users rat-
ing reviews as compared to only focusing on the informa-
tion present in the reviews made by the user themselves. In 
Moghaddam et al. (2012), the authors focused on personal-
ized predictions for review helpfulness where they presented 
a tensor factorization model. Note that we did not compare 
with tensor-based factorization methods due to the fact they 
require a higher time and space complexity, and instead, we 
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had chosen to use matrix factorization as the base method to 
extend showing that the correlation between the two tasks is 
able to provide performance improvements. Another inter-
action-based sign prediction by Derr and Tang (2018); Derr 
et al. (2019) had been on the interactions of congress mem-
bers and bills voted on in the US Congress where balance 
theory was studied in signed bipartite networks.

7  Conclusion and future work

In signed networks, users can express their opinions via two 
activities, i.e., creating signed links and expressing opin-
ions on the content from others. Intuitively, the opinions and 
behaviors that the users have when performing these two 
activities online should be related. We first performed an 
analysis to validate the correlations between the signed links 
and user interaction polarities from both global and local 
perspectives. Our results show that indeed, there is a strong 
relation between the way users behave in expressing their 
opinions when performing these two aforementioned activi-
ties. We next proposed a joint optimization framework, LIP, 
for the prediction of signed links and interaction polarities 
that was built upon having the opinions in one task power 
the other.

This novel framework was able to boost the performance 
in both prediction tasks when jointly solving the two prob-
lems as compared to separately solving them individually. 
The significance becomes even more important in settings 
where the social network data are sparse or involve cold-start 
users. This is due to the fact that LIP is able to partially avoid 
and mitigate these problems since it can transfer informa-
tion about users opinions from one problem to another by 
capturing the correlations between them. Our experiments 
on a real-world signed network have demonstrated both the 
effectiveness of LIP and also its robustness to the data spar-
sity and cold-start problems.

Future work in this domain will be to seek other problems 
that users might have correlated opinions or behaviors that 
can be harnessed to increase the performance in multiple 
tasks simultaneously. We also would like to investigate the 
underlying dynamics in signed networks that are causing 
these correlations, or other phenomenon, such as high reci-
procity in some networks and not in others. More specifi-
cally how reciprocity relates to ways in which users express 
their opinions and perhaps sometimes even seek revenge. 
Furthermore, we plan to use this direction to perform the 
negative link prediction task (Tang et al. 2015; Abbasi et al. 
2018; Shen et al. 2019) by harnessing interaction data for 
learning explicit negative links.
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