
Graph Neural Networks: Self-supervised Learning
Yu Wang

Vanderbilt University
yu.wang.1@vanderbilt.edu

Wei Jin
Michigan State University

jinwei2@msu.edu

Tyler Derr
Vanderbilt University

tyler.derr@vanderbilt.edu

ABSTRACT
Although deep learning has achieved state-of-the-art performance
across numerous domains, these models generally require large
annotated datasets to reach their full potential and avoid overfitting.
However, obtaining such datasets can have high associated costs
or even be impossible to procure. Self-supervised learning (SSL)
seeks to create and utilize specific pretext tasks on unlabeled data
to aid in alleviating this fundamental limitation of deep learning
models. Although initially applied in the image and text domains,
recent interest has been in leveraging SSL in the graph domain to
improve the performance of graph neural networks (GNNs). For
node-level tasks, GNNs can inherently incorporate unlabeled node
data through the neighborhood aggregation unlike in the image or
text domains; but they can still benefit by applying novel pretext
tasks to encode richer information and numerous such methods
have recently been developed. For GNNs solving graph-level tasks,
applying SSL methods is more aligned with other traditional do-
mains, but still presents unique challenges and has been the focus of
a few works. In this chapter, we summarize recent developments in
applying SSL to GNNs categorizing them via the different training
strategies and types of data used to construct their pretext tasks,
and finally discuss open challenges for future directions.

1 INTRODUCTION
Recent years have witnessed the great success of applying deep
learning in numerous fields. However, the superior performance
of deep learning heavily depends on the quality of the supervi-
sion provided by the labeled data and collecting a large amount of
high-quality labeled data tends to be time-intensive and resource-
expensive [22, 79]. Therefore, to alleviate the demand for massive la-
beled data and provide sufficient supervision, self-supervised learn-
ing (SSL) has been introduced. Specifically, SSL designs domain-
specific pretext tasks that leverage extra supervision from unlabeled
data to train deep learning models and learn better representa-
tions for downstream tasks. In computer vision, various pretext
tasks have been studied, e.g., predicting relative locations of image
patches [43] and identifying augmented images generated from im-
age processing techniques such as cropping, rotating and resizing
[53]. In natural language processing, self-supervised learning has
also been heavily utilized, e.g., predicting the masked word in BERT
[9].

Simultaneously, graph representation learning has emerged as
a powerful strategy for analyzing graph-structured data over the
past few years [18]. As the generalization of deep learning to the
graph domain, Graph Neural Networks (GNNs) has become one
promising paradigm due to their efficiency and strong performance
in real-world applications [67, 78]. However, the vanilla GNNmodel
(i.e., Graph Convolutional Network [33]) and even more advanced

existing GNNs [19, 58, 65, 66] are mostly established in a semi-
supervised or supervised manner, which still requires high cost
label annotation. Additionally, these GNN models may not take full
advantage of the abundant information in unlabeled data, such as
the graph topology and node attributes. Hence, SSL can be naturally
harnessed for GNNs to gain additional supervision and thoroughly
exploit the information in the unlabeled data.

Compared with grid-based data such as images or text [73],
graph-structured data is far more complex due to its highly irregu-
lar topology, involved intrinsic interactions and abundant domain-
specific semantics [63]. Different from images and text where the en-
tire structure represents a single entity or expresses a single seman-
tic meaning, each node in the graph is an individual instance with
its own features and positioned in its own local context. Further-
more, these individual instances are inherently related with each
other, which forms diverse local structures that encode even more
complex information to be discovered and analyzed. While such
complexity engenders tremendous challenges in analyzing graph-
structured data, the substantial and diverse information contained
in the node features, node labels, local/global graph structures, and
their interactions and combinations provide golden opportunities
to design self-supervised pretext tasks.

Embracing all the challenges and opportunities to study self-
supervised learning in GNNs, the works [22, 24, 28, 70] have been
the first research that systematically design and compare differ-
ent self-supervised pretext tasks in GNNs. For example, the works
[24, 70] design pretext tasks to encode the topological properties
of a node such as centrality, clustering coefficient, and its graph
partitioning assignment, or to encode the attributes of a node such
as individual features and clustering assignments in embeddings
output by GNNs. The work [28] designs pretext tasks to align the
pairwise feature similarity or the topological distance between two
nodes in the graph with the closeness of two nodes in the embed-
ding space. Apart from the supervision information employed in
creating pretext tasks, designing effective training strategies and se-
lecting reasonable loss functions are another crucial components in
incorporating SSL into GNNs. Two frequently used training strate-
gies that equip GNNs with SSL are 1) pre-training GNNs through
completing pretext task(s) and then fine-tuning the GNNs on down-
stream task(s), and 2) jointly training GNNs on both pretext and
downstream tasks [28, 70]. There are also few works [5, 55] ap-
plying the idea of self-training in incorporating SSL into GNNs.
In addition, loss functions are selected to be tailored for purposes
of specific pretext tasks, which includes classification-based tasks
(cross-entropy loss), regression-based tasks (mean squared error
loss) and contrastive-based tasks (contrastive loss).

In view of the substantial progress made in the field of graph
neural networks and the significant potential of self-supervised

1

Yu Wang, Wei Jin, and Tyler Derr

learning, this chapter aims to present a systematic and compre-
hensive review on applying self-supervised learning into graph
neural networks. The rest of the chapter is organized as follows.
Section 2 first introduces self-supervised learning and pretext tasks,
and then summarizes frequently used self-supervised methods from
the image and text domains. In Section 3, we introduce the training
strategies that are used to incorporate SSL into GNNs and catego-
rize the pretext tasks that have been developed for GNNs. Section 4
and 5 present detailed summaries of numerous representative SSL
methods that have been developed for node-level and graph-level
pretext tasks. Thereafter, in Section 6 we discuss representative
SSL methods that are developed using both node-level and graph-
level supervision, which we refer to as node-graph-level pretext
tasks. Section 7 collects and reinforces the major results and the
insightful discoveries in prior sections. Concluding remarks and
future forecasts on the development of SSL in GNNs are provided
in Section 8.

2 SELF-SUPERVISED LEARNING
Supervised learning is the machine learning task of training a model
that maps an input to an output based on the ground-truth input-
output pairs provided by a labeled dataset. Good performance of
supervised learning requires a decent amount of labeled data (es-
pecially when using deep learning models), which are expensive
to manually collect. Conversely, self-supervised learning generates
supervisory signals from unlabeled data and then trains the model
based on the generated supervisory signals. The task used for train-
ing the model based on the generative signal is referred to as the
pretext task. In comparison, the task whose ultimate performance
we care about the most and expect our model to solve is referred
to as the downstream task. To guarantee the performance benefits
from self-supervised learning, pretext tasks should be carefully
designed such that completing them encourages the model to have
the similar or complementary understanding as completing down-
stream tasks. Self-supervised learning initially originated to solve
tasks in image and text domains. The following part focuses on
introducing self-supervised learning in these two fields with the
specific emphasis on different pretext tasks.

In computer vision (CV), many ideas have been proposed for
self-supervised representation learning on image data. A common
example is that we expect that small distortion on an image does not
affect its original semantic meaning or geometric forms. The idea to
create surrogate training datasets with unlabeled image patches by
first sampling patches from different images at varying positions
and then distorting patches by applying a variety of random trans-
formations are proposed in [12]. The pretext task is to discriminate
between patches distorted from the same image or from different
images. Rotation of an entire image is another effective and inex-
pensive way to modify an input image without changing semantic
content [16]. Each input image is first rotated by a multiple of 90
degrees at random. The model is then trained to predict which
rotation has been applied. However, instead of performing pretext
tasks on an entire image, the local patches could also be extracted
to construct the pretext tasks. Examples of methods using this tech-
nique include predicting the relative position between two random
patches from one image [10] and designing a jigsaw puzzle game to

place nine shuffled patches back to the original locations [43]. More
pretext tasks such as colorization, autoencoder, and contrastive
predictive coding have also been introduced and effectively utilized
[45, 60, 71].

While computer vision has achieved amazing progress on self-
supervised learning in recent years, self-supervised learning has
been heavily utilized in natural language processing (NLP) research
for quite a while. Word2vec [40] is the first work that popularized
the SSL ideas in the NLP field. Center word prediction and neigh-
bor word prediction are two pretext tasks in Word2vec where the
model is given a small chunk of the text and asked to predict the
center word in that text or vice versa. BERT [9] is another famous
pre-trained model in NLP where two pretest tasks are to recover
randomly masked words in a text or to classify whether two sen-
tences can come one after another or not. Similar works have also
been introduced, such as having the pretext task classify whether a
pair of sentences are in the correct order [34], or a pretext task that
first randomly shuffles the ordering of sentences and then seeks to
recover the original ordering [36].

Compared with the difficulty of data acquisition encountered
in image and text domains, machine learning in the graph domain
faces even more challenges in acquiring high-quality labeled data.
For example, for molecular graphs it can be extremely expensive
to perform the necessary laboratory experiments to label some
molecules [52], and in a social network obtaining ground-truth
labels for individual users may require large-scale surveys or be un-
able to be released due to privacy agreements/concerns [3]. There-
fore, the success achieved by applying SSL in CV and NLP naturally
leads the question as to whether SSL can be effectively applied in
the graph domain. Given that graph neural network is among the
most powerful paradigms for graph representation learning, in fol-
lowing sections wewill mainly focus on introducing self-supervised
learning within the framework of graph neural networks and high-
lighting/summarizing these recent advancements.

3 APPLYING SSL TO GNNS: CATEGORIZING
TRAINING STRATEGIES, LOSS FUNCTIONS
AND PRETEXT TASKS

When seeking to apply self-supervised learning to GNNs, the major
decisions to be made are how to construct the pretext tasks, which
includes what information to leverage from the unlabeled data,
what loss function to use, and what training strategy to use for
effectively improving the GNN’s performance. Hence, in this section
we will first mathematically formalize the graph neural network
with self-supervised learning and then discuss each of the above.
More specifically, we will introduce three training strategies, three
loss functions that are frequently employed in the current literature,
and categorize current state-of-the-art pretext tasks for GNNs based
on the type of information they leverage for constructing the pretext
task.

Given an undirected attributed graph 𝒢 = {𝒱, ℰ,X}, where
𝒱 = {𝑣1, ..., 𝑣 |𝒱 |} represents the vertex set with |𝒱 | vertices, ℰ
represents the edge set and 𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗) is an edge between
node 𝑣𝑖 and 𝑣 𝑗 , X ∈ R |𝒱 |×𝑑 represents the feature matrix and
x𝑖 = X[𝑖, :]⊤ ∈ R𝑑 is the 𝑑-dimensional feature vector of the node
𝑣𝑖 . A ∈ R |𝒱 |× |𝒱 | is the adjacency matrix where A𝑖 𝑗 = 1 if 𝑒𝑖 𝑗 ∈ ℰ

2

Graph Neural Networks: Self-supervised Learning

and A𝑖 𝑗 = 0 if 𝑒𝑖 𝑗 ∉ ℰ . We denote any GNN-based feature ex-
tractor as 𝑓𝜃 : R |𝒱 |×𝑑 × R |𝒱 |× |𝒱 | → R |𝒱 |×𝑑′

parametrized by 𝜃 ,
which takes any node feature matrix X and the graph adjacency
matrix A and outputs the 𝑑 ′-dimensional representation for each
node ZGNN = 𝑓𝜃 (X,A) ∈ R |𝒱 |×𝑑′

, which is further fed into any
permutation invariant function READOUT : R |𝒱 |×𝑑′ → R𝑑′

to ob-
tain the graph embeddings zGNN,𝒢 = READOUT(𝑓𝜃 (X,A)) ∈ R𝑑

′
.

More specifically, we note that here 𝜃 represents the parameters
encoded in the corresponding network architectures of the GNN
[19, 58, 65, 66]. Considering the transductive semi-supervised tasks
where we are provided with the labeled node set 𝒱𝑙 ⊂ 𝒱 , the la-
beled graph 𝒢, the associated node label matrix Ysup ∈ R |𝒱𝑙 |×𝑙 ,
and the graph label ysup,𝒢 ∈ R𝑙 with label dimension 𝑙 , we aim
to classify nodes and graphs. The node and graph representations
output by GNNs are firstly processed by the extra adaptation layer
ℎ𝜃sup parametrized by the supervised adaptation parameter 𝜃sup to
obtain the predicted 𝑙-dimensional node label Zsup ∈ R |𝒱 |×𝑙 and
graph label zsup,𝒢 ∈ R𝑙 by Eq. (1)-(2). Then the model parameters
𝜃 in GNN-based extractor 𝑓𝜃 and the parameters 𝜃sup in adaptation
layer ℎ𝜃sup are learned by optimizing the supervised loss calculated
between the output/predicted label and the true label for labeled
nodes and the labeled graph, which can be formulated as:

Zsup = ℎ𝜃sup (𝑓𝜃 (X,A)) (1)

zsup,𝒢 = ℎ𝜃sup (READOUT(𝑓𝜃 (X,A))) (2)

𝜃∗, 𝜃∗sup = arg min
𝜃,𝜃sup

ℒsup (𝜃, 𝜃sup)

=



arg min
𝜃,𝜃sup

1
|𝒱𝑙 |

∑
𝑣𝑖 ∈𝒱𝑙

ℓsup (zsup,𝑖 , ysup,𝑖)︸ ︷︷ ︸
Node supervised task

arg min
𝜃,𝜃sup

ℓsup (zsup,𝒢 , ysup,𝒢)︸ ︷︷ ︸
Graph supervised task

, (3)

where ℒsup is the total supervised loss function and ℓsup is the
supervised loss function for each example, ysup,𝑖 = Ysup [𝑖, :]⊤
indicates the true label for node 𝑣𝑖 in node supervised task and
ysup,𝒢 indicates the true label for graph 𝒢 in graph supervised task.
Their corresponding predicted label distributions are denoted as
zsup,𝑖 = Zsup [𝑖, :]⊤ and zsup,𝒢 . 𝜃, 𝜃sup are parameters to be opti-
mized for any GNN model and the extra adaptation layer for the
supervised downstream task, respectively. Note that for ease of
notation, we assume the above graph supervised task is operated
only on one graph but the above framework can be easily adapted
to supervised tasks on multiple graphs.

3.1 Training Strategies
In this chapter, we view SSL as the process of designing a specific
pretext task and learning the model on the pretext task. In this
sense, SSL can either be used as unsupervised pre-training or be
integrated with semi-supervised learning.

The model capability of extracting features for completing pre-
text and downstream tasks is improved through optimizing the

model parameters 𝜃, 𝜃ssl, and 𝜃sup, where 𝜃ssl denotes the parame-
ters of the adaptation layer for the pretext task. Inspired by relevant
discussions [24, 28, 55, 69, 70], we summarize three possible training
strategies that are popular in the literature to train GNNs in the self-
supervised setting as self-training, pre-training with fine-tuning,
and joint training.

3.1.1 Self-training. Self-training is a strategy that leverages the
supervision information in the training process generated by the
model itself [37, 51]. A typical self-training pipeline begins with first
training the model over the labeled data, then generating pseudo
labels to unlabeled samples that have highly confident predictions,
and including them into the labeled data in the next round of train-
ing. In this way, the pretext task is the same as the downstream
task by utilizing the pseudo labels for some of the originally un-
labeled data. A detailed overview is presented in Fig. 1 where the
prediction results are re-utilized to augment the training data in
the next iteration as done in [55].

Figure 1: An overview of GNNs with SSL using self-training.

3.1.2 Pre-training and Fine-tuning. A common strategy to utilize
features learned from completing pretext tasks includes applying
the optimized parameters from self-supervision as initialization
for fine-tuning in downstream tasks. This strategy consists of two
stages: pre-training on the self-supervised pretext tasks and fine-
tuning on the downstream tasks. The overview of this two-stage
optimization strategy is given in Fig. 2.

The whole model consists of one shared GNN-based feature
extractor and two adaptation modules, one for the pretext task and
one for the downstream task. In the pre-training process, the model
is trained with the self-supervised pretext task(s) as:

Zssl = ℎ𝜃ssl (𝑓𝜃 (X,A)), (4)

zssl,𝒢 = ℎ𝜃ssl (READOUT(𝑓𝜃 (X,A))), (5)

𝜃∗, 𝜃∗ssl = argmin
𝜃,𝜃ssl

ℒssl (𝜃, 𝜃ssl)

=



arg min
𝜃,𝜃ssl

1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓssl (zssl,𝑖 , yssl,𝑖)︸ ︷︷ ︸
Node pretext tasks

arg min
𝜃,𝜃ssl

ℓssl (zssl,𝒢 , yssl,𝒢)︸ ︷︷ ︸
Graph pretext tasks

, (6)

where 𝜃ssl denotes the parameters of the adaptation layer ℎ𝜃ssl
for the pretext tasks, ℓssl is the self-supervised loss function for
each example, and ℒssl is the total loss function of completing the

3

Yu Wang, Wei Jin, and Tyler Derr

Figure 2: An overview of GNNs with SSL using pre-training
and fine-tuning.

self-supervised task. In node pretext tasks, zssl,𝑖 = Zssl [𝑖, :]⊤ and
yssl,𝑖 = Yssl [𝑖, :]⊤, which are the self-supervised predicted and true
label(s) for the node 𝑣𝑖 , respectively. In graph pretext tasks, zssl,𝒢
and yssl,𝒢 are the self-supervised predicted and true label(s) for the
graph 𝒢, respectively. Then, in the fine-tuning process, the feature
extractor 𝑓𝜃 is trained by completing downstream tasks in Eq. (1)-
(3) with the pre-trained 𝜃∗ as the initialization. Note that to utilize
the pre-trained node/graph representations the fine-tuning process
can also be replaced by training a linear classifier (e.g., Logistic
Regression [49, 57, 69, 75]).

3.1.3 Joint Training. Another natural idea to harness self-supervised
learning for graph neural networks is to combine losses of com-
pleting pretext task(s) and downstream task(s) and jointly train the
model. The overview of the joint training is shown in Fig. 3.

The joint training consists of two components: feature extrac-
tion by a GNN and adaption processes for both the pretext tasks
and downstream tasks. In the feature extraction process, a GNN
takes the graph adjacency matrix A and the feature matrix X as
input and outputs the node embeddings ZGNN and/or graph embed-
dings zGNN,𝒢 . In the adaptation procedure, the extracted node and
graph embeddings are further transformed to complete pretext and
downstream tasks via ℎ𝜃ssl and ℎ𝜃sup , respectively. We then jointly
optimize the pretext and downstream task losses as:

Zsup = ℎ𝜃sup (𝑓𝜃 (X,A)), Zssl = ℎ𝜃ssl (𝑓𝜃 (X,A)), (7)

zsup,𝒢 = ℎ𝜃sup (READOUT(𝑓𝜃 (X,A))), (8)
zssl,𝒢 = ℎ𝜃ssl (READOUT(𝑓𝜃 (X,A))), (9)

𝜃∗, 𝜃∗sup, 𝜃
∗
ssl =



arg min
𝜃,𝜃sup,𝜃ssl

1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

(𝛼1ℓsup (zsup,𝑖 , ysup,𝑖)

+ 𝛼2ℓssl (zssl,𝑖 , yssl,𝑖))︸ ︷︷ ︸
Node pretext tasks

arg min
𝜃,𝜃sup,𝜃ssl

𝛼1ℓsup (zsup,𝒢 , ysup,𝒢) + 𝛼2ℓssl (zssl,𝒢 , yssl,𝒢)︸ ︷︷ ︸
Graph pretext tasks

,

(10)

where 𝛼1, 𝛼2 ∈ R > 0 are the weights for combining the supervised
loss ℓsup and the self-supervised loss ℓssl.

Figure 3: An overview of GNNswith SSL using joint training.

3.2 Loss Functions
A loss function is used to evaluate the performance of how well the
algorithm models the data. Generally in GNNs with self-supervised
learning, the loss function for the pretext task has three forms,
which are classification loss, regression loss and contrastive learn-
ing loss. Note that the loss functions we discuss here are only for
the pretext tasks rather than downstream tasks.

3.2.1 Classification and Regression Loss. In completing classification-
based pretext tasks such as node clustering where node embeddings
are expected to encode the assignment information of the clusters,
the objective for the pretext is to minimize the following loss func-
tion:

ℒssl =



1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓCE (zssl,𝑖 , yssl,𝑖)︸ ︷︷ ︸
Node pretext tasks

= − 1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

𝐿∑
𝑗=1
1(yssl,𝑖 𝑗 = 1) log(z̃ssl,𝑖 𝑗)

ℓCE (zssl,𝒢 , yssl,𝒢)︸ ︷︷ ︸
Graph pretext tasks

= −
𝐿∑
𝑗=1

1(yssl,𝒢 𝑗 = 1) log(z̃ssl,𝒢 𝑗)

,

(11)

where ℓCE indicates the cross entropy function, zssl,𝑖 and zssl,𝒢 rep-
resents the predicted label distribution of node 𝑣𝑖 and graph 𝒢
for the pretext task, and their corresponding class probability dis-
tribution z̃ssl,𝑖 and z̃ssl,𝒢 are calculated by softmax normalization,
respectively. For example, z̃ssl,𝑖 𝑗 is the probability of node 𝑣𝑖 be-
longing to class 𝑗 . Since every node 𝑣𝑖 has its own pseudo label (i.e.,
yssl,𝑖) in completing pretext tasks, we can consider all the nodes 𝒱
in the graph compared to only the labeled set of nodes 𝒱𝑙 as before
in downstream tasks.

In completing regression-based pretext tasks, such as feature
completion, the mean squared error loss is typically used as the
loss function:

ℒssl =



1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓMSE (zssl,𝑖 , yssl,𝑖)︸ ︷︷ ︸
Node pretext tasks

= 1
|𝒱 |

∑
𝑣𝑖 ∈𝒱 | |zssl,𝑖 − yssl,𝑖 | |2

ℓMSE (zssl,𝒢 , yssl,𝒢)︸ ︷︷ ︸
Graph pretext tasks

= | |zssl,𝒢 − yssl,𝒢 | |2
,

(12)
4

Graph Neural Networks: Self-supervised Learning

Figure 4: An overview of GNNs with SSL using contrastive
learning.

where the objective is minimizing the distance from our learned
embedding to yssl,𝑖 which represents any ground-truth value of
node 𝑣𝑖 , such as the original attribute in the feature completion or
other values of node 𝑣𝑖 .

3.2.2 Contrastive Learning Loss. Inspired by the significant progress
achieved by employing the contrastive learning in natural language
processing and computer vision [35], recent studies [21, 57, 69, 75,
76] propose similar contrastive frameworks to enable SSL in GNNs.
The general goal of contrastive learning in GNNs is to train GNN-
based encoders such that the agreement of representations between
similar graph instances (e.g., multiple views generated from the
same instance) is maximized while the agreement between dissimi-
lar graph instances (e.g., multiple views generated from different
instances) is minimized. Such maximization and minimization of
agreements between different views of instances is typically formal-
ized as maximizing the mutual information ℐ (Z1ssl,Z

2
ssl) between

representations Z1ssl and Z2ssl under two different views as:

max
𝜃,𝜃ssl

ℐ (Z1ssl,Z
2
ssl), (13)

where Z1ssl,Z
2
ssl correspond to representations output from any

GNN-based encoder followed by an adaptation layer ℎ𝜃ssl under
two different graph views 𝒢1,𝒢2.

In order to computationally estimate and maximize the mu-
tual information that is originally intractable to be exactly com-
puted in most cases [1, 14, 47, 64], multiple estimators to evaluate
the lower bounds to the mutual information are derived, includ-
ing normalized temperature-scaled cross-entropy (NT-Xent) [6],
Donsker-Varadhan representation of the KL-divergence [11], noise-
contrastive estimation (InfoNCE) [17], Jensen-Shannon estimator
[44]. For simplicity, here we only present one frequently used mu-
tual information estimator NT-Xent, which is formalized as:

ℒssl =
1

|𝒫+ |
∑

(𝑖, 𝑗) ∈𝒫+
ℓNT-Xent (Z1ssl,Z

2
ssl,𝒫

−)

= − 1
|𝒫+ |

∑
(𝑖, 𝑗) ∈𝒫+

log
exp(𝒟(z1ssl,𝑖 , z

2
ssl, 𝑗))∑

𝑘∈{ 𝑗∪𝒫−
𝑖
}
exp(𝒟(z1ssl,𝑖 , z

2
ssl,𝑘))

(14)

where 𝒟(z1ssl,𝑖 , z
2
ssl, 𝑗)) =

sim(z1ssl,𝑖 ,z
2
ssl, 𝑗)

𝜏 is a learnable discriminator
parametrized with the similarity function (i.e., cosine similarity)
and the temperature factor 𝜏 , 𝒫+ represents the set of all pairs of
positive samples while 𝒫− =

⋃
(𝑖, 𝑗) ∈𝒫+ 𝒫−

𝑖
represents all sets of

negative samples. Especially 𝒫−
𝑖
contains all negative samples of

the sample 𝑖 . Note that we can contrast both node representations,
graph representations and node-graph representations under dif-
ferent views. Therefore, z1ssl is not limited to the node embeddings,
but could refer to the embeddings of both node and graph under
the first graph view 𝒢1. Thus, 𝑖, 𝑗, 𝑘 could refer to both node and
graph samples.

3.3 Pretext Tasks
Pretext tasks are constructed by leveraging different types of super-
vision information coming from different components of graphs.
Based on the components that generate the supervision information,
pretext tasks that are prevalent in the literature are categorized into
node-level, graph-level and node-graph level. In completing node-
level and graph-level pretext tasks, three types of information can
be leveraged: graph structure, node features, or hybrid, where the
latter combines the information from node features, graph structure,
and even information from the known training labels (as presented
in [28]). We summarize the categorization of pretext tasks as a tree
where each leaf node represents a specific type of pretext tasks in
Fig. 5 while also including the corresponding references. In next
three sections, we give detailed explanations about each of these
pretext tasks and summarize the majority of existing methods.

4 NODE-LEVEL SSL PRETEXT TASKS
For node-level pretext tasks, methods have been developed to use
easily-accessible data to generate pseudo labels for each node or
relationships for each pair of nodes. In this way, the GNNs are
then trained to be predictive of the pseudo labels or to keep the
equivalence between the node embeddings and the original node
relationships.

4.1 Structure-based Pretext Tasks
Different nodes have different structure properties in graph topol-
ogy, which can be measured by the node degree, centrality, node
partition, etc. Thus, for structure-based pretext tasks at the node-
level, we expect to align node embeddings extracted from the GNNs
with their structure properties, in an attempt to ensure this infor-
mation is preserved while GNNs learn the node embeddings.

Since degree is the most fundamental topological property, Jin
et al. [28] designs the pretext task to recover the node degree from
the node embeddings as follows:

ℒssl =
1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓMSE (zssl,𝑖 , 𝑑𝑖) (15)

where 𝑑𝑖 represents the degree of node 𝑖 and zssl,𝑖 = Zssl [𝑖, :]⊤
denotes the self-supervised GNN embeddings of node 𝑖 . It should
be noted that this pretext task can be generalized to harness any
structure property in the node level.

Node centrality measures the importance of nodes based on their
structure roles in the whole graph [42]. Hu et al. [24] designs a pre-
text task to have GNNs estimate the rank scores of node centrality.
The specific centrality measures considered are eigencentrality, be-
tweenness, closeness, and subgraph centrality. For a node pair (𝑢, 𝑣)
and a centrality score 𝑠 , with relative order R𝑠𝑢,𝑣 = 1(𝑠𝑢 > 𝑠𝑣) where
R𝑠𝑢,𝑣 = 1 if 𝑠𝑢 > 𝑠𝑣 and R𝑢,𝑣 = 0 if 𝑠𝑢 ≤ 𝑠𝑣 , a decoder 𝐷𝑟𝑎𝑛𝑘

𝑠 for
5

Yu Wang, Wei Jin, and Tyler Derr

GNN SSL Pretext Tasks

Node-level
Pretext Tasks

Graph-level
Pretext Tasks

Node-graph-level
Pretext Tasks

Structure-based

Degree recovery [28]

Centrality ranking [24]

Partition recovery [70]

Feature-based

Feature completion [22, 28,
39, 62, 70]

Embedding completion [39,
48, 62]

Clustering recovery [28, 70]

Pairwise similarity recovery
[28, 29]

Hybrid

Node contrastive learning
[4, 75, 76]

Prediction recovery [5, 55]

Patch-graph contrastive
learning [57]

Subgraph-graph contrastive
learning [21, 54]

Patch-subgraph contrastive
learning [27]

Structure-based

Connection recovery [13, 25,
46, 59, 74]

Topological distance recovery
[28, 49]

Motif contrastive learning
[72]

𝑟 -ego subgraph contrastive
learning [50]

Attention-based topology
recovery [32]

Topological transformation
recovery [15]

Feature-based

Graph contrastive learning
[22, 69]

Hybrid

Context recovery [22, 28]

Topological distance to clus-
ter recovery [28]

Graph generation recovery
[23]

Figure 5: A categorization of SSL pretext tasks used in GNNs.1

centrality score 𝑠 estimates its rank score by S𝑣 = 𝐷𝑟𝑎𝑛𝑘
𝑠 (zGNN,𝑣).

The probability of estimated rank order is defined by the sigmoid
function R̃𝑠𝑢,𝑣 =

exp(S𝑢−S𝑣)
1+exp(𝑆𝑢−𝑆𝑣) . Then predicting the relative order be-

tween pairs of nodes could be formalized as a binary classification
problem with the loss:

ℒssl = −
∑
𝑠

∑
𝑢,𝑣∈𝒱

(R𝑠𝑢,𝑣 log R̃𝑠𝑢,𝑣 + (1 − R𝑠𝑢,𝑣) log(1 − R̃𝑠𝑢,𝑣)) . (16)

Different from peer works, [24] does not consider any node fea-
ture but instead extract the node features directly from the graph
topology, which includes: (1) degree that defines the local impor-
tance of a node; (2) core-number that defines the connectivity of
the subgraph around a node; (3) collective influence that defines
the neighborhood importance of a node; and (4) local clustering
coefficient, which defines the connectivity of 1-hop neighborhood
of a node. Then, the four features (after min-max normalization)
are concatenated with a nonlinear transformation and fed into the
GNN where [24] uses the pretext tasks: centrality ranking, cluster-
ing recovery and edge prediction. Another innovative idea in [24]

is to choose a fix-tune boundary in the middle layer of GNNs. The
GNN blocks below this boundary are fixed, while the ones above
the boundary are fine-tuned. For downstream tasks that are closely
related to the pre-trained tasks, a higher boundary is used.

Another important node-level structure property is the partition
each node belongs after performing a graph partitioning method.
In [70], the pretext task is to train the GNNs to encode the node
partition information. Graph partitioning is to partition the nodes of
a graph into different groups such that the number of edges between
each group is minimized. Given the node set 𝒱 , the edge set ℰ , and
a preset number of partitions 𝑝 ∈ [1, |𝒱 |], a graph partitioning
algorithm (e.g., [30] as used in [70]) will output a set of nodes
{𝒱par1 , ...,𝒱par𝑝 |𝒱par𝑖 ⊂ 𝒱, 𝑖 = 1, ..., 𝑝}. Then the classification loss
is set exactly the same as:

ℒssl = − 1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓCE (zssl,𝑖 , yssl,𝑖) (17)

1Additional summary details and the corresponding code links for these methods
can be found at https://github.com/NDS-VU/GNN-SSL-Chapter.

6

https://github.com/NDS-VU/GNN-SSL-chapter

Graph Neural Networks: Self-supervised Learning

where zssl,𝑖 denotes the embedding of node 𝑣𝑖 and assuming that
the partitioning label is a one-hot encoding yssl,𝑖 ∈ R𝑝 with 𝑘-th
entry as 1 and others as 0 if 𝑣𝑖 ∈ 𝒱par𝑘 , 𝑖 = 1, ..., |𝒱 |, ∃𝑘 ∈ [1, 𝑝].

4.2 Feature-based Pretext Tasks
Node features are another important information that can be lever-
aged to provide extra supervision. Since the state-of-the-art GNNs
suffer from over-smoothing [5], the original feature information is
partially lost after fed into the GNNs. In order to reduce the informa-
tion loss in node embeddings, the pretext task in [22, 28, 39, 62, 70]
is to first mask node features and let the GNN predict those features.
More specifically, they randomly mask input node features by re-
placing them with special mask indicators and then apply GNNs to
obtain the corresponding node embeddings. Finally a linear model is
applied on top of embeddings to predict the corresponding masked
node features. Assuming the set of nodes that are masked is 𝒱m,
then the self-supervised regression loss to reconstruct these masked
features is:

ℒssl =
1

|𝒱m |
∑

𝑣𝑖 ∈𝒱m

ℓMSE (zssl,𝑖 , x𝑖) (18)

To handle the high sparsity of the node features, it is beneficial
to first perform feature dimensionality reduction on 𝑋 (such as
principle component analysis (PCA) used in [28]). Additionally,
instead of reconstructing node features, node embeddings could
also be reconstructed from their corrupted version, such as in [39].

Contrary to the graph partitioning where nodes are grouped by
the graph topology, in graph clustering the clusters of nodes are
discovered based on their features [70]. In this way the pretext task
can be designed to recover the node clustering assignment. Given
the node set 𝒱 , the feature matrix𝑋 , and a preset number of clusters
𝑝 ∈ [1, |𝒱 |] (or without if the clustering algorithm automatically
learns the number of clusters) as input, the clustering algorithm
will output a set of node clusters {𝒱clu1 , . . . ,𝒱clu𝑝 |𝒱clu𝑖 ⊂ 𝒱, 𝑖 =
1, ..., 𝑝} and assuming for node 𝑣𝑖 , the partitioning label is a one-
hot encoding yssl,𝑖 ∈ R𝑝 with 𝑘-th entry as 1 and others as 0 if
𝑣𝑖 ∈ 𝒱clu𝑘 , 𝑖 = 1, ..., |𝒱 |, ∃𝑘 ∈ [1, 𝑝]. Then the loss is the same as
Eq. (17).

Instead of focusing on individual nodes, pretext tasks have also
been developed based on the relationship between pairs of nodes
[28, 29]. The basic idea is to retain the node pairwise feature simi-
larity in the node embeddings from GNNs. Suppose 𝒯𝑠 , 𝒯𝑑 denote
the sets of node pairs having the highest and the lowest similarity:

𝒯𝑠 = {(𝑣𝑖 , 𝑣 𝑗) | sim(x𝑖 , x𝑗) in top-B of

{sim(x𝑖 , x𝑏)}𝐵𝑏=1\sim(x𝑖 , x𝑖),∀𝑣𝑖 ∈ 𝒱}, (19)

𝒯𝑑 = {(𝑣𝑖 , 𝑣 𝑗) | sim(x𝑖 , x𝑗) in bottom-B of

{sim(x𝑖 , x𝑏)}𝐵𝑏=1\sim(x𝑖 , x𝑖),∀𝑣𝑖 ∈ 𝒱}, (20)

where sim(x𝑖 , x𝑗) measures the cosine similarity of features be-
tween two nodes 𝑣𝑖 , 𝑣 𝑗 and 𝐵 is the number of top/bottom pairs
selected for each node. Then the pretext task is to optimize the
following regression loss:

ℒssl =
1

|𝒯𝑠 ∪ 𝒯𝑑 |
∑

(𝑣𝑖 ,𝑣𝑗)∈𝒯𝑠∪𝒯𝑑

ℓMSE
(
𝑓𝑤 (|zGNN,𝑖−zGNN, 𝑗 |), sim(x𝑖 , x𝑗)

)
,

(21)

where 𝑓𝑤 is a function mapping the difference between two node
embeddings from GNNs to a scalar representing the similarity
between them.

4.3 Hybrid Pretext Tasks
Instead of employing only the topology or only the feature infor-
mation as the extra supervision, some pretext tasks combine them
together as a hybrid supervision, or even utilize information from
the known training labels.

A contrastive framework for unsupervised graph representation
learning, GRACE, where two correlated graph views are generated
by randomly performing corruption on attributes (masking node
features) and topology (removing or adding graph edges) is pro-
posed in [75]. Then the GNNs are trained using a contrastive loss
to maximize the agreement between node embeddings in these
two views. In each iteration two graph views 𝒢1 = {𝐴1, 𝑋 1} and
𝒢2 = {𝐴2, 𝑋 2} are generated randomly according to the possible
augmentation functions from an input graph 𝒢 = {𝐴,𝑋 }.

The objective is to maximize the similarity of the same nodes
in different views of the graph while minimizing the similarity of
different nodes in the same or different views of the graph. Thus,
if we denote the node embeddings in the two views as Z1GNN =

𝑓𝜃 (X1,A1),Z2GNN = 𝑓𝜃 (X2,A2), then the contrastive NT-Xent loss
is:

ℒssl =
1

|𝒫+ |
∑

(𝑣1
𝑖
,𝑣2
𝑖
) ∈𝒫+

ℓNT-Xent (Z1GNN, 𝑍
2
GNN,𝒫

−), (22)

where𝒫+ includes positive pairs of (𝑣1
𝑖
, 𝑣2
𝑖
) where 𝑣1

𝑖
, 𝑣2
𝑖
correspond

to the same node in different views, while 𝒫− =
⋃

(𝑣1
𝑖
,𝑣2
𝑖
) ∈𝒫+ 𝒫−

𝑣1
𝑖

represents all sets of negative samples with 𝒫−
𝑣1
𝑖

containing nodes
different from 𝑣𝑖 in the same view (intra-view negative pairs) or
the other view (inter-view negative pairs).

More specifically, in the above, the two graph corruptions are
removing edges and masking node features. In removing edges, a
random masking matrix M ∈ {0, 1} |𝒱 |× |𝒱 | is randomly sampled
whose entry is drawn from a Bernoulli distributionM𝑖 𝑗 ∼ ℬ(1−𝑝𝑟)
if A𝑖 𝑗 = 1 for the original graph. 𝑝𝑟 is the probability of each edge
being removed. The resultingmatrix can be computed asA′ = A⊙M
creating the adjacency matrix of graph view 𝒢′

from 𝒢.
In masking node features, a random vectorm ∈ {0, 1}𝑑 is utilized,

where each dimension ofm is independently drawn from a Bernoulli
distribution with probability 1 − 𝑝𝑚 and 𝑑 is the dimension of the
node features X. Then, the generated node features X′ for graph
view 𝒢′

from 𝒢 is computed by:

X′ = [x1 ⊙ m; x2 ⊙ m; · · · ; x |𝒱 | ⊙ m], (23)

where [;] is the concatenation operator. Moreover, a modified ver-
sion of the GRACE is proposed in [76] where the whole contrastive
procedure is the same as GRACE except that the graph augmenta-
tion is adaptively performed based on the importance of nodes and
edges. Specifically, the probability of removing an edge between
nodes 𝑣𝑖 , 𝑣 𝑗 should reflect the importance of the edge (𝑣𝑖 , 𝑣 𝑗) such
that the augmentation function is more likely to corrupt unimpor-
tant edges while keeping important connective structures intact
in augmented views. Similarly the feature dimensions frequently

7

Yu Wang, Wei Jin, and Tyler Derr

appearing in influential nodes are seen as important and so are
masked with lower probability.

The observation made in [4] that nodes with further topological
distance to the labeled nodes are more likely to be misclassified
indicates the uneven distribution of the ability of GNNs to embed
node features in the whole graph. However, existing graph con-
trastive learning methods ignore this uneven distribution, which
motivates Chen et al. [4] to propose the distance-wise graph con-
trastive learning (DwGCL) method that can adaptively augment
the graph topology, sample the positive and negative pairs, and
maximize the mutual information. The topology information gain
(TIG) is calculated based on Group PageRank and node features
to describe the task information effectiveness that the node ob-
tains from labeled nodes along the graph topology. By ranking
the performance of GNNs on nodes according to their TIG val-
ues with/without contrastive learning, it is found that contrastive
learning mainly improves the performance on nodes that are topo-
logically far away from the labeled nodes. Based on the above
finding, Chen et al. [4] proposes to: 1) perturb the graph topology
by augmenting nodes according to their TIG value; 2) sampling
the positive and negative pairs considering local/global topology
distance and node embedding distance; and 3) assigning different
weights to nodes in the self-supervised loss based on their TIG
rankings. Results demonstrate the performance improvement of
this distance-wise graph contrastive learning over the typical con-
trastive learning approach.

Another special supervision information to exploit is the predic-
tion results of the model itself. Sun et al. [55] leverages the multi-
stage training framework to utilize the information of the pseudo
labels generated by predictions in the next rounds of training. The
multi-stage training algorithm repeatedly adds the most confident
predictions of each class to the label set and re-utilizes these pseudo
labeled data to train the GNNs. Furthermore, a self-checking mech-
anism based on DeepCluster [2] is proposed to guarantee the pre-
cision of labeled data. Assuming that the cluster assignment for
node 𝑣𝑖 is c𝑖 ∈ {0, 1}𝑝 (here the number of clusters is assumed to
equal to the number of predefined classes 𝑝 in the downstream
classification task) and the centroid matrix 𝐶 ∈ R𝑑′×𝑝 represents
the feature of each cluster, then we obtain the cluster assignment
c𝑖 for each node 𝑣𝑖 by optimizing:

min
𝐶

1
𝒱

∑
𝑣𝑖 ∈𝒱

min
c𝑖 ∈{0,1}𝑝

| |zGNN,𝑖 −𝐶c𝑖 | |22, 𝑠 .𝑡 . cT𝑖 1𝑝 = 1. (24)

After applying DeepCluster to group nodes into multiple clusters,
an aligning mechanism is used to assign nodes in each cluster to
their corresponding class defined by downstream tasks. For each
cluster 𝑘 ∈ [1, 𝑝] in unlabeled data, the computation of aligning
mechanism is:

𝑐𝑘 = argmin
𝑚

| |𝜅𝑘 − 𝜇𝑚 | |2, (25)

where 𝜇𝑚 denotes the centroid of class𝑚 in labeled data,𝜅𝑘 denotes
the centroid of cluster 𝑘 in unlabeled data and 𝑐𝑘 represents the
aligned class that has the closest distance to the centroid 𝜅𝑘 of the
cluster 𝑘 among all centroids of classes in the original labeled data.
Note that the self-checking can be directly performed by comparing
the distance of each unlabeled node to centroids of classes in labeled

data. However, directly checking in this naïve way is very time
consuming.

5 GRAPH-LEVEL SSL PRETEXT TASKS
After having just presented the node-level SSL pretext tasks, in
this section we focus on the graph-level SSL pretext tasks where
we desire the node embeddings coming from the GNNs to encode
information of graph-level properties.

5.1 Structure-based Pretext Tasks
As the counterpart of the nodes in the graph, the edges encode
abundant information of the graph, which can also be leveraged as
an extra supervision to design pretext tasks. The pretext task in [74]
is to recover the graph topology, i.e., predict edges, after randomly
removing edges in the graph. After node embeddings zGNN,𝑖 is
obtained for each node 𝑣𝑖 , the probability of the edge between
any pair of nodes 𝑣𝑖 , 𝑣 𝑗 is calculated by their feature similarity as
follows:

A′
𝑖 𝑗 = sigmoid(zGNN,𝑖 (zGNN, 𝑗)⊤), (26)

and the weighted cross-entropy loss is used during training, which
is defined as:

ℒssl = −
∑

𝑣𝑖 ,𝑣𝑗 ∈𝒱
𝑊 (A𝑖 𝑗 logA′

𝑖 𝑗) + (1 − A𝑖 𝑗) log(1 − A′
𝑖 𝑗), (27)

where𝑊 is the weight hyperparameter used for balancing two
classes; which are node pairs having an edge and node pairs without
an edge between them.

As it is known that unclean graph structure usually impedes the
applicability of GNNs [8, 26]. A method that trains the GNNs by
downstream supervised tasks based on the cleaned graph structure
reconstructed from completing a self-supervised pretext task is
introduced in [13]. The self-supervised pretext task aims to train a
separate GNN to denoise the corrupted node feature X̂ generated
by either randomly zeroing some dimensions of the original node
feature X when having binary features or by adding independent
Gaussian noise when X is continuous. Two methods are used to
generate the initial graph adjacency matrix Ã. The first method Full
Parametrization (FP) treats every entry in Ã as a parameter and
directly optimizes its |𝒱 |2 parameters by denoising the corrupted
feature X̂. The second method MLP-kNN considers a mapping
function kNN(MLP(X)), where a multilayer perceptron (i.e., MLP(·))
updates the original node features and kNN(·) produces a sparse
matrix by selecting top-k similar nodes to each node and adds edges
between them. Then, the generated initial adjacency matrix Ã is
normalized and symmetrized into a new adjacency matrix A as
follows:

A = D− 1
2
𝑃 (Ã) + 𝑃 (Ã)⊤

2
D− 1

2 , (28)

where 𝑃 is a function with a non-negative range to ensure the posi-
tivity of every entry in A. In MLP-kNN method, 𝑃 is the element-
wise ReLU function. However, the ReLU function could result in the
gradient flow problem in the FP method, thus the element-wise ELU
function followed by an addition of 1 to avoid the problem of gradi-
ent flow is used instead. Next, a separate GNN-based encoder takes
noisy node features X̂ and the new normalized adjacency matrix
A as input and output the updated node features Ẑ = GNN(X̂,A).

8

Graph Neural Networks: Self-supervised Learning

The parameters in FP and MLP-kNN used for generating the initial
adjacency matrix Ã is optimized by:

ℒssl =
1

|𝒱m |
∑

𝑣𝑖 ∈𝒱m

ℓMSE (x𝑖 , ẑ𝑖), (29)

where ẑ𝑖 = 𝑍 [𝑖, :]⊤ is the noisy embedding vector of the node
𝑣𝑖 obtained by the separate GNN-based encoder. The optimized
parameters in FP and MLP-kNN leads to the generation of more
cleaned graph adjacency matrix, which in turn results in the better
performance in the downstream tasks.

In addition to the graph edges and the adjacency matrix, topolog-
ical distance between nodes is another important global structure
property in graph. The pretext task in Peng et al. [49] is to recover
the topological distance between nodes. More specifically, they
leverage the shortest path length between nodes denoted as 𝑝𝑖 𝑗
between nodes 𝑣𝑖 and 𝑣 𝑗 , but this could be replaced with any other
distance measure. Then, they define the set 𝒞𝑘

𝑖
as all the nodes

having the shortest path distance of length 𝑘 from node 𝑣𝑖 . More
formally, this is defined as:

𝒞𝑖 = 𝒞1𝑖 ∪ 𝒞2𝑖 ∪ · · · ∪ 𝒞𝛿𝑖
𝑖
, 𝒞𝑘𝑖 = {𝑣 𝑗 |𝑑𝑖 𝑗 = 𝑘}, 𝑘 = 1, 2, · · · , 𝛿𝑖 , (30)

where 𝛿𝑖 is the upper bound of the hop count from other nodes to
𝑣𝑖 , 𝑑𝑖 𝑗 is the length of the path 𝑝𝑖 𝑗 , and 𝒞𝑖 is the union of all the
𝑘-hop shortest path neighbor sets 𝐶𝑘

𝑖
. Based on these sets, one-hot

encodings d𝑖 𝑗 ∈ R𝛿𝑖 are created for pairs of nodes 𝑣𝑖 , 𝑣 𝑗 , where
𝑣 𝑗 ∈ 𝒞𝑖 , according to their distance 𝑑𝑖 𝑗 . Then, the GNN model is
guided to extract node embeddings that encode node topological
distance as follows:

ℒssl =
∑
𝑣𝑖 ∈𝒱

∑
𝑣𝑗 ∈𝒞𝑖

ℓCE (𝑓𝑤 (|zGNN,𝑖 − zGNN, 𝑗 |), d𝑖 𝑗), (31)

where 𝑓𝑤 is a function mapping the difference between two node
embeddings to the probabilities of pairs of nodes belonging to the
corresponding category of the topological distance. Since the num-
ber of the categories depends on the upper bound of the hop count
(topological distance) but precisely determining this upper bound
is time-consuming for a big graph, it is assumed that the number of
hops (distance) is under control based on small-world phenomenon
[42] and is further divided into several major categories that clearly
discriminates the dissimilarity and partly tolerates the similarity.
Experiments demonstrate that dividing the topological distance
into four categories: 𝒞1

𝑖
, 𝒞2

𝑖
, 𝒞3

𝑖
, 𝒞𝑘

𝑖
(𝑘 ≥ 4) achieves the best perfor-

mance (i.e., 𝛿𝑖=4). Another problem is that the number of nodes
that are close to the focal node 𝑣𝑖 is much less than the nodes that
are further away (i.e., the magnitude of 𝒞𝛿𝑖

𝑖
will be significantly

larger than other sets). To circumvent this imbalance problem, node
pairs are sampled with adaptive ratio.

Network motifs are recurrent and statistically significant sub-
graphs of a larger graph and Zhang et al [72] designs a pretext task
to train a GNN encoder that can automatically extract graph motifs.
The learned motifs are further leveraged to generate informative
subgraphs used in graph-subgraph contrastive learning. Firstly, a
GNN-based encoder 𝑓𝜃 and a𝑚-slot embedding table {m1, ...,m𝑚}
denoting𝑚 cluster centers of𝑚 motifs are initialized. Then, a node
affinity matrix U ∈ R |𝒱 |× |𝒱 | is calculated by softmax normalization
on the embedding similarity 𝒟(zGNN,𝑖 , zGNN, 𝑗) between nodes 𝑖, 𝑗

as in Eq. (14). Afterwards, spectral clustering [61] is performed on
U to generate different groups, within which 𝑛𝒢 connected compo-
nents that have more than three nodes are collected as the sampled
subgraphs from the graph 𝒢 and their embeddings are calculated
by applying READOUT function. For each subgraph, its cosine sim-
ilarity to each of the𝑚 motifs is calculated to obtain a similarity
metric S ∈ R𝑚×𝑛𝒢 . To produce semantic-meaningful subgraphs
that are close to motifs, the top 10% most similar subgraphs to each
motif are selected based on the similarity metric S and are collected
into a set 𝒢top. The affinity values in U between pairs of nodes in
each of these subgraphs are increased by optimizing the loss:

ℒ1 = − 1
|𝒢top |

|𝒢top |∑
𝑖=1

∑
(𝑣𝑗 ,𝑣𝑘) ∈𝒢top

𝑖

U[𝑗, 𝑘] . (32)

The optimization of the above loss forces nodes in motif-like sub-
graphs to be more likely to be grouped together in spectral clus-
tering, which leads to more subgraph samples aligned with the
motifs. Next, the embedding table of motifs is optimized based
on the sampled subgraphs. The assignment matrix Q ∈ R𝑚×𝑛𝒢

is found by maximizing similarities between embeddings and its
assigned motif:

max
Q

𝑇𝑟 (QTS) − 1
𝜆

∑
𝑖, 𝑗

Q[𝑖, 𝑗] logQ[𝑖, 𝑗], (33)

where the second term controlled by hyperparameter 𝜆 is to avoid
all representations collapsing into a single cluster center. After the
cluster assignment matrix Q is obtained, the GNN-based encoder
and the motif embedding table are trained, which is equivalent
to a supervised𝑚-class classification problem with labels Q and
the prediction distribution S̃ obtained by applying a column-wise
softmax normalization with temperature 𝜏 :

ℒ2 = − 1
𝑛𝒢

𝑛𝒢∑
𝑖=1

ℓCE (q𝑖 , s̃𝑖), (34)

where q𝑖 = Q[:, 𝑖] and s̃𝑖 = S̃[:, 𝑖] denote the assignment distri-
bution and predicted distribution for the subgraph 𝑖 , respectively.
Optimizing Eq. (34) jointly enhances the ability of GNN encoder
to extract subgraphs that are similar to motifs and improves the
embeddings of motifs. The last step is to train the GNN-based
encoder by a classification task where subgraphs are reassigned
back to their corresponding graphs. Note that the subgraphs are
generated by the Motif-guided extractor, which are more likely
to capture higher-level semantic information compared with ran-
domly sampled subgraphs. The whole framework is trained jointly
by weighted combining ℒ1,ℒ2 and the contrastive loss.

Aside from the network motifs, other subgraph structures can be
leveraged to provide extra supervision in designing pretext tasks.
In [50], an 𝑟 -ego network for a certain vertex is defined as the
subgraph induced by nodes that have shortest path with length
shorter than 𝑟 . Then a random walk with restart is initiated at
ego vertex 𝑣𝑖 and the subgraph induced by nodes that are visited
during the random walk starting at 𝑣𝑖 are used as the augmented
version of the 𝑟 -ego network. First, two augmented 𝑟 -ego networks
centered around vertex 𝑣𝑖 are obtained by performing the random
walk twice (i.e., 𝒢𝑖 and 𝒢+

𝑖
), which are defined as a positive pair

9

Yu Wang, Wei Jin, and Tyler Derr

since they come from the same 𝑟 -ego network. In comparison,
a negative pair corresponds to two subgraphs augmented from
different 𝑟 -ego networks (e.g., one coming from 𝑣𝑖 and another
coming from 𝑣 𝑗 resulting in random walk induced subgraphs 𝒢𝑖
and 𝒢𝑗 , respectively). Based on the above defined positive and
negative subgraph pairs, a contrastive loss is set up to optimize the
GNNs as follows:

ℒssl =
1

|𝒫+ |
∑

(𝒢𝑖 ,𝒢+
𝑖
) ∈𝒫+

ℓNT-Xent (Z1ssl,Z
2
ssl,𝒫

−), (35)

where Z1ssl,Z
2
ssl denotes the GNN-based graph embeddings and

specifically here the two different views are the same Z1ssl = Z2ssl.
𝒫+ contains positive pairs of subgraphs (𝒢𝑖 ,𝒢+

𝑖
) sampled by ran-

dom walk starting at the same ego vertex 𝑣𝑖 in the same graph
while 𝑃− =

⋃
(𝒢𝑖 ,𝒢+

𝑖
) ∈𝒫+ 𝒫−

𝒢𝑖
represents all sets of negative sam-

ples. Specifically 𝒫−
𝒢𝑖

represents subgraphs sampled by random
walk starting at either different ego vertex from 𝑣𝑖 in 𝒢 or directly
sampled by random walk in different graphs from 𝒢.

Although Graph Attention Network (GAT) [58] achieves per-
formance improvements over the original GCN [33], there is little
understanding of what graph attention learns. To this end, Dongk-
wan et al. [32] proposes a specific pretext task to leverage the edge
information to supervise what graph attention learns:

ℒssl =
1

|ℰ ∪ ℰ− |
∑

(𝑗,𝑖) ∈ℰ∪ℰ−
1
(
(𝑗, 𝑖) ∈ ℰ

)
· log 𝜒𝑖 𝑗 (36)

+ 1
(
(𝑗, 𝑖) ∈ ℰ−

)
log(1 − 𝜒𝑖 𝑗), (37)

where ℰ is the set of edges, ℰ− is the sampled set of node pairs
without edges, and 𝜒𝑖 𝑗 is the edge probability between node 𝑖, 𝑗
calculated from their embeddings. Based on two primary edge
attentions, the GAT attention (shortly as GO) [58] and the dot-
product attention (shortly as DP) [38], two advanced attention
mechansims, SuperGATSD (Scaled Dot-product, shortly as SD) and
SuperGATMX (Mixed GO and DP, shortly as MX) are proposed:

𝑒𝑖 𝑗,SD = 𝑒𝑖 𝑗,DP/
√
𝐹, 𝜒𝑖 𝑗,SD = 𝜎 (𝑒𝑖 𝑗,SD), (38)

𝑒𝑖 𝑗,MX = 𝑒𝑖 𝑗,GO · 𝜎 (𝑒𝑖 𝑗,DP), 𝜒𝑖 𝑗,MX = 𝜎 (𝑒𝑖 𝑗,DP), (39)
where𝜎 denotes the sigmoid function taking the edgeweight 𝑒𝑖 𝑗 and
calculating the edge probability 𝜒𝑖 𝑗 . SuperGATSD divides the dot-
product of edge 𝑒𝑖 𝑗,DP by a square root of dimension as Transformer
[56] to prevent some large values from dominating the entire atten-
tion after softmax. SuperGATMX multiplies GO and DP attention
with sigmoid, which is motivated by the gating mechanism of Gated
Recurrent Units (GRUs) [7]. Since DP attention with the sigmoid
denotes the edge probability, multiplying 𝜎 (𝑒𝑖 𝑗,DP) in calculating
𝑒𝑖 𝑗,MX can softly drop neighbors that are not likely linked while im-
plicitly assigning importance to the remaining nodes. 𝑒𝑖 𝑗,DP, 𝑒𝑖 𝑗,GO
are the weight of edge (𝑖, 𝑗) used to calculate the GO and DP at-
tention. Results disclose several insightful discovers including the
GO attention learns label-agreement better than DP, whereas DP
predicts edge presence better than GO, and the performance of the
attention mechanism is not fixed but depends on homophily and
average degree of the specific graph.

The topological information can also be generated manually
for designing pretext tasks. Gao et al. [15] proposes to encode the

transformation information between two different graph topolo-
gies in the representations of nodes obtained by GNNs. First, they
transform the original graph adjacency matrix A into Â by ran-
domly adding or removing edges from the original edge set. Then,
by feeding the original and transformed graph topology and the
node feature matrix into any GNN-based encoder, the feature rep-
resentation ZGNN, ẐGNN before and after topology transformation
are calculated and their difference ΔZ ∈ R𝑁×𝐹 ′

is defined as:

ΔZ = ẐGNN − ZGNN = [ΔzGNN,1, ...,ΔzGNN,𝑁]⊤ (40)

= [ẑGNN,1 − zGNN,1, ..., ẑGNN,𝑁 − zGNN,𝑁]⊤ . (41)

Next they predict the topology transformation between node 𝑣𝑖 and
𝑣 𝑗 through the node-wise feature difference ΔZ by constructing the
edge representation as:

e𝑖 𝑗 =
exp(−(Δz𝑖 − Δz𝑗) ⊙ (Δz𝑖 − Δz𝑗))

| | exp(−(Δz𝑖 − Δz𝑗) ⊙ (Δz𝑖 − Δz𝑗)) | |
, (42)

where ⊙ denotes the Hardamard product. This edge representation
e𝑖 𝑗 is then fed into an MLP for the prediction of the topological
transformation, which includes four classes: edge addition, edge
deletion, keeping disconnection and keeping connection between
each pair of nodes. Thus, the GNN-based encoder is trained by:

ℒssl =
1

|𝒱 |2
∑

𝑣𝑖 ,𝑣𝑗 ∈𝒱
ℓCE (MLP(e𝑖 𝑗), t𝑖 𝑗) (43)

where we denote the topological transformation category between
nodes 𝑣𝑖 and 𝑣 𝑗 as one-hot encoding t𝑖 𝑗 ∈ R4.

5.2 Feature-based Pretext Tasks
Typically, graphs does not come with any feature information and
here the graph-level features refer to the graph embeddings ob-
tained after applying a pooling layer on all node embeddings from
GNNs.

GraphCL [69] designs the pretext task to first augment graphs
by four different augmentations including node dropping, edge
perturbation, attribute masking and subgraph extraction and then
maximize the mutual information of the graph embeddings be-
tween different augmented views generated from the same original
graph while also minimizing the mutual information of the graph
embeddings between different augmented views generated from
different graphs. The graph embeddings Zssl are obtained through
any permutational-invariant READOUT function on node embed-
dings followed by applying an adaptation layer. Then the mutual
information is maximized by optimizing the following NT-Xent
contrastive loss:

ℒssl =
1

|𝒫+ |
∑

(𝒢𝑖 ,𝒢𝑗) ∈𝒫+
ℓNT-Xent (Z1ssl,Z

2
ssl,𝒫

−), (44)

where Z1ssl,Z
2
ssl represent graph embeddings under two different

views. The view could be the original view without any augmen-
tation or the one generated from applying four different augmen-
tations. 𝒫+ contains positive pairs of graphs (𝒢𝑖 ,𝒢𝑗) augmented
from the same original graph while 𝒫− =

⋃
(𝒢𝑖 ,𝒢𝑗) ∈𝒫+ 𝒫−

𝒢𝑖
repre-

sents all sets of negative samples. Specifically 𝒫−
𝒢𝑖

contains graphs
augmented from the graph different from 𝒢𝑖 . Numerical results

10

Graph Neural Networks: Self-supervised Learning

Figure 6: An example of a context and r-neighborhood
graph.

demonstrate that the augmentation of edge perturbations bene-
fits social networks but hurts biochemical molecules. Applying
attribute masking achieves better performance in denser graphs.
Node dropping and subgraph extraction are generally beneficial
across all datasets.

5.3 Hybrid Pretext Tasks
One way to use the information of the training nodes in designing
pretext tasks is developed in [22]where the context concept is raised.
The goal of this work is to pre-train a GNN so that it maps nodes
appearing in similar graph structure contexts to nearby embeddings.
For every node 𝑣𝑖 , the 𝑟 -hop neighborhood of 𝑣𝑖 contains all nodes
and edges that are at most 𝑟 -hops away from 𝑣𝑖 in the graph. The
context graph of 𝑣𝑖 is a subgraph between 𝑟1-hops and 𝑟2-hops
away from node 𝑣𝑖 . It is required that 𝑟1 < 𝑟 so that some nodes are
shared between the neighborhood and the context graph, which is
referred to as context anchor nodes. Examples of neighborhood and
context graphs are shown in Fig. 6. Two GNN encoders are set up:
the main GNN encoder is to get the node embedding z𝑟GNN,𝑖 based
on their 𝑟 -hop neighborhood node features and the context GNN
is to get the node embeddings of every other node in the context
anchor node set, which are then averaged to get the node context
embedding c𝑖 . Then [22] used negative sampling to jointly learn
the main GNN and the context GNN. In the optimization process,
positive samples refer to the situation when the center node of the
context and the neighborhood graphs is the samewhile the negative
samples refer to the situation when the center nodes of the context
and the neighborhood graphs are different. The learning objective
is a binary classification of whether a particular neighborhood
and a particular context graph have the same center node and the
negative likelihood loss is used as follows:

ℒssl = −(1
|𝒦|

∑
(𝑣𝑖 ,𝑣𝑗) ∈𝒦

(y𝑖 log(𝜎 ((z𝑟GNN,𝑖)
⊤c𝑗)) (45)

+ (1 − y𝑖) log(1 − 𝜎 ((z𝑟GNN,𝑖)
⊤c𝑗)))) (46)

where 𝑦𝑖 = 1 for the positive sample where 𝑖 = 𝑗 while 𝑦𝑖 = 0 for
the negative sample where 𝑖 ≠ 𝑗 , with𝒦 denoting the set of positive
and negative pairs, and 𝜎 is the sigmoid function computing the
probability.

Similar idea to employ the context concept in completing pretext
tasks is also proposed in [28]. Specifically, the context here is defined

as:

y𝑖𝑐 =
|Γ𝒱𝑙

(𝑣𝑖 , 𝑐) | + |Γ𝒱𝑢
(𝑣𝑖 , 𝑐) |

|Γ𝒱𝑙
(𝑣𝑖) | + |Γ𝒱𝑢

(𝑣𝑖) |
, 𝑐 = 1, ..., 𝑙, (47)

where 𝒱𝑢 and 𝒱𝑙 denote the unlabeled and labeled node set, Γ𝒱𝑢
(𝑣𝑖)

denotes the unlabeled nodes that are adjacency to node 𝑣𝑖 , Γ𝒱𝑢
(𝑣𝑖 , 𝑐)

denotes the unlabeled nodes that have been assigned class 𝑐 and
are adjacency to node 𝑣𝑖 , 𝒩𝒱𝑙

(𝑣𝑖) denotes the labeled nodes that
are adjacency to node 𝑣𝑖 , Γ𝒱𝑙

(𝑣𝑖 , 𝑐) denotes the labeled nodes that
are adjacency to node 𝑣𝑖 and of class 𝑐 . To generate labels for the
unlabeled nodes so as to calculate the context vector y𝑖 for each
node 𝑣𝑖 , label propagation (LP) [77] or the iterative classification
algorithm (ICA) [41] is used to construct pseudo labels for unlabeled
nodes in 𝒱𝑢 . Then the pretext task is approached by optimizing the
following loss function:

ℒssl =
1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓCE (zssl,𝑖 , y𝑖), (48)

The main issue of the above pretext task is the error caused by
generating labels from LP or ICA. The paper [28] further proposed
two methods to improve the above pretext task. The first method
is to replace the procedure of assigning labels of unlabeled nodes
based on only one method such as LP or ICA with assigning la-
bels by ensembling results from multiple different methods. Their
second method treats the initial labeling from LP or ICA as noisy
labels, and then leverages an iterative approach [20] to improve the
context vectors, which leads to significant improvements based on
this correction phase.

One previous pretext task is to recover the topological distance
between nodes. However, calculating the distance of the shortest
path for all pairs of nodes even after the sampling is time-consuming.
Therefore, Jin et al. [28] replaces the pairwise distance between
nodes with the distance between nodes and their corresponding
clusters. For each cluster, a fixed set of anchor/center nodes is
established. For each node, its distance to this set of anchor nodes is
calculated. The pretext task is to extract node features that encode
the information of this node2cluster distance. Suppose 𝑘 clusters are
obtained by applying the METIS graph partitioning algorithm [31]
and the node with the highest degree is assumed to be the center
of the corresponding cluster, then each node 𝑣𝑖 will have a cluster
distance vector d𝑖 ∈ R𝑘 and the distance-to-cluster pretext task is
completed by optimizing:

ℒssl =
1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓMSE (zssl,𝑖 , d𝑖), (49)

Aside from the graph topology and the node features, the distri-
bution of the training nodes and their training labels are another
valuable source of information for designing pretext tasks. One of
the pretext tasks in [28] is to require the node embeddings output
by GNNs to encode the information of the topological distance from
any node to the training nodes. Assuming that the total number
of classes is 𝑝 and for class 𝑐 ∈ {1, ..., 𝑝} and the node 𝑣𝑖 ∈ 𝒱 , the
average, minimum and maximum shortest path length from 𝑣𝑖 to
all labeled nodes in class 𝑐 is calculated and denoted as d𝑖 ∈ R3𝑝 ,
then the objective is to optimize the same regression loss as defined
in Eq. (49)

The generating process of networks encodes abundant infor-
mation for designing pretext tasks. Hu et al. [23] proposes the

11

Yu Wang, Wei Jin, and Tyler Derr

GPT-GNN framework for generative pre-training of GNNs. This
framework performs attribute and edge generation to enable the
pre-trained model to capture the inherent dependency between
node attributes and graph structure. Assuming that the likelihood
over this graph by this GNNmodel is 𝑝 (𝒢;𝜃) which represents how
the nodes in 𝒢 are attributed and connected, GPT-GNN aims to
pre-train the GNN model by maximizing the graph likelihood, i.e.,
𝜃∗ = max𝜃 𝑝 (𝒢;𝜃). Given a permutated order, the log likelihood is
factorized autoregressively - generating one node per iteration as:

log𝑝𝜃 (X, ℰ) =
|𝒱 |∑
𝑖=1

log𝑝𝜃 (x𝑖 , ℰ𝑖 |X<𝑖 , ℰ<𝑖) (50)

For all nodes that are generated before the node 𝑖 , their attributes
X<𝑖 , and the edges between these nodes ℰ<𝑖 are used to generate a
new node 𝑣𝑖 , including both its attribute x𝑖 and its connections
with existing nodes ℰ𝑖 . Instead of directly assuming that x𝑖 , ℰ𝑖
are independent, they devise a dependency-aware factorization
mechanism to maintain the dependency between node attributes
and edge existence. The generation process can be decomposed
into two coupled parts: (1) generating node attributes given the
observed edges, and (2) generating the remaining edges given the
observed edges and the generated node attributes. For computing
the loss of attribute generation, the generated node feature matrix
X is corrupted by masking some dimensions to obtain the corrupted
version X̂Attr and further fed together with the generated edges into
GNNs to get the embeddings ẐAttrGNN. Then, the decoder Dec

Attr (·)
is specified, which takes ẐAttrGNN as input and outputs the predicted
attributes DecAttr (ẐAttrGNN). The attribute generation loss is:

ℒAttr
ssl =

1
|𝒱 |

∑
𝑣𝑖 ∈𝒱

ℓMSE (DecAttr (ẑAttrGNN,𝑖), x𝑖), (51)

where ẑAttrGNN,𝑖 = ẐAttrGNN [𝑖, :]
⊤ denotes the decoded embedding of

node 𝑣𝑖 . For computing the loss of edge reconstruction, the original
generated node feature matrix X is directly fed together with the
generated edges into GNNs to get the embeddings ZEdgeGNN. Then the
contrastive NT-Xent loss is calculated:

ℒEdge
ssl =

1
|𝒫+ |

∑
(𝑣𝑖 ,𝑣𝑗) ∈𝒫+

ℓNT-Xent (Z
Edge
GNN,Z

Edge
GNN,𝒫

−), (52)

where 𝒫+ contains positive pairs of connected nodes (𝑣𝑖 , 𝑣 𝑗) while
𝒫− =

⋃
(𝑣𝑖 ,𝑣𝑗) ∈𝒫+ 𝒫−

𝑣𝑖
represents all sets of negative samples and

𝑃−𝑣𝑖 contains all nodes that are not directly linked with node 𝑣𝑖 . Note
here two views are set equal, i.e., Z1 = Z2 = ZEdgeGNN.

6 NODE-GRAPH-LEVEL SSL PRETEXT TASKS
All the above pretext tasks are designed based on either the node
or the graph level supervision. However, there is another final line
of research combining these two sources of supervision to design
pretext tasks, which we summarize in this section.

Velickovic et al. [57] proposed to maximize the mutual informa-
tion between representations of high-level graphs and low-level
patches. In each iteration, a negative sample X̂, Â is generated by
corrupting the graph through shuffling node features and removing
edges. Then a GNN-based encoder is applied to extract node repre-
sentations ZGNN and ẐGNN, which are also named as the local patch

representations. The local patch representations are further fed into
an injective readout function to get the global graph representa-
tions zGNN,𝒢 = READOUT(ZGNN). Then the mutual information
between ZGNN and zGNN,𝒢 is maximized by minimizing the follow-
ing loss function:

ℒssl =
1

|𝒫+ | + |𝒫− |
(|𝒫+ |∑
𝑖=1
E(X,A) [log𝜎 (z⊤GNN,𝑖WzGNN,𝒢)] (53)

+
|𝒫− |∑
𝑗=1
E(X̂,Â) [log(1 − 𝜎 (z̃⊤GNN,𝑖WzGNN,𝒢))]

)
,

where |𝒫+ | and |𝒫− | are the number of the positive and negative
pairs, 𝜎 stands for any nonlinear activation function and PReLU
is used in [57], z⊤GNN,𝑖WzGNN,𝒢 calculates the weighted similarity
between the patch representation centered at node 𝑣𝑖 and the graph
representation. A linear classifier is followed up to classify nodes
after the above contrastive pretext task.

Similar to Velickovic et al. [57] where the mutual information
between the patch representations and the graph representations
is maximized, Hassani et al. [21] proposed another framework of
contrasting the node representations of one view and the graph rep-
resentations of another view. The first view is the original graph and
the second view is generated by a graph diffusion matrix. The heat
and personalized PageRank (PPR) diffusion matrix are considered,
which are:

Sheat = exp(𝑡AD−1 − 𝑡), (54)

SPPR = 𝛼 (I𝑛 − (1 − 𝛽)D−1/2AD−1/2)−1, (55)

where 𝛽 denotes teleport probability, 𝑡 is the diffusion time, and
D is the diagonal degree matrix. After D is obtained, two different
GNN encoders followed by a shared projection head are applied
on nodes in the original graph adjacency matrix and the gener-
ated diffusion matrix to get two different node embeddings Z1GNN
and Z2GNN. Two different graph embeddings z1GNN,𝒢 and z2GNN,𝒢
are further obtained by applying a graph pooling function to the
node representations (before the projection head) and followed by
another shared projection head. The mutual information between
nodes and graphs in different views is maximized through:

ℒssl = − 1
|𝒱 |

∑
𝑣𝑖 ∈𝑉

(MI(z1GNN,𝑖 , z
2
GNN,𝒢) +MI(z2GNN,𝑖 , z

1
GNN,𝒢)),

(56)
where the MI represents the mutual information estimator and
four estimators are explored, which are noise-contrastive estimator,
Jensen-Shannon estimator, normalized temperature-scaled cross-
entropy, andDonsker-Varadhan representation of the KL-divergence.
Note that the mutual information in Eq. (56) is averaged over all
graphs in the original work [21]. Additionally, their results demon-
strate that Jensen-Shannon estimator achieves better results across
all graph classification tasks, whereas in the node classification
task, noise contrastive estimation achieves better results. They also
discover that increasing the number of views does not increase the
performance on downstream tasks.

12

Graph Neural Networks: Self-supervised Learning

7 DISCUSSION
Existing methods employing self-supervision to graph neural net-
works achieve performance improvements and numerous insightful
results are also discovered in the meantime. While most of the self-
supervised pretext tasks are helpful for the downstream tasks, there
are still a fair proportion of pretext tasks that bring weak or even
fail to boost the performance [15, 28, 39, 70]. This is either because
these pretext tasks are highly unrelated to the primary task, i.e., the
encoded features useful for pretext tasks are useless or even harmful
[39] for downstream tasks or because the information learned from
completing pretext tasks can already be learned from completing
downstream tasks by GNNs [28]. Besides, the strength of the perfor-
mance improvement depends on the specific GNN architecture used
for completing pretext and downstream tasks. The improvements
are more significant for basic GNNs such as GCN, GAT, and GIN
while less for more advanced GNNs such as GMNN [70]. Further-
more, one pretext task is not universally the best across multiple
datasets [15, 39]. Therefore, whether a self-supervised pretext task
helps GNNs in the standard target performance is determined by
first whether the dataset allows the GNNs to extract extra feature
information through completing pretext tasks, and second whether
the extra self-supervised information complement, contradict to or
has already been covered by information extracted from existing
architecture [70]. Numerous works focus on applying contrastive
learning as a form of self-supervised learning [4, 21, 57, 69, 76].
Generally they find that while composing different augmentations
benefits the performance [69], increasing the number of views gen-
erated from the same graph augmentation technique to more than
two cause no further improvement [21], which is different from vi-
sual representation learning. Moreover, the beneficial combinations
of augmentations are data-specific because of the highly heteroge-
neous nature of the graph-structured data and harder contrastive
tasks are more helpful than overly simple ones [69]. Therefore,
designing viable pretext tasks requires domain specific knowledge
and should be targeted towards specific types of networks, GNN
architectures and downstream tasks.

8 CONCLUSION
In this chapter, we provided a systemic, categorical and comprehen-
sive overview on the recent works leveraging self-supervised learn-
ing in graph neural networks. Despite recent successes achieved by
applying self-supervised learning in the text and image domains,
self-supervised learning applied to the graph domain, especially for
graph neural networks, is still in its emerging stage. Several promis-
ing directions could be pursued to further advance this field. First,
although a large surge of research focuses on designing effective
pretext tasks boosting the performance of graph neural networks,
few works focus on visualizing, interpreting and explaining the
underlying reason causing such beneficial performance improve-
ments. Deeply understanding the intrinsic mechanism as to why
and how SSL helps GNNs could help us design more powerful pre-
text tasks. Second, similar to the work defining the architectural
design space for GNNs to quickly query the best GNN design for a
novel task on a novel dataset [68], we should collect and classify
various pretext tasks and create a design space for SSL in GNNs.
This allows for transferring the best designs of pretext tasks across

different downstream tasks, GNN architectures and datasets. We
hope that this chapter can shed some light on the main ideas of
applying self-supervised learning to graph neural networks and
related applications in order to encourage progress in the field.

REFERENCES
[1] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Aaron Courville, and Devon Hjelm. 2018. Mutual information neural
estimation. In International Conference on Machine Learning. PMLR, 531–540.

[2] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. 2018.
Deep clustering for unsupervised learning of visual features. In Proceedings of
the European Conference on Computer Vision (ECCV). 132–149.

[3] Bo Chen, Jing Zhang, Xiaokang Zhang, Xiaobin Tang, Lingfan Cai, Hong Chen,
Cuiping Li, Peng Zhang, and Jie Tang. 2020. COAD: Contrastive Pre-training
with Adversarial Fine-tuning for Zero-shot Expert Linking. arXiv preprint
arXiv:2012.11336 (2020).

[4] Deli Chen, Yanyai Lin, Lei Li, Xuancheng Ren Li, Jie Zhou, Xu Sun, et al. 2020.
Distance-wise Graph Contrastive Learning. arXiv preprint arXiv:2012.07437
(2020).

[5] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 3438–3445.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[7] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724–1734.

[8] Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael
Bronstein. 2020. Latent Patient Network Learning for Automatic Diagnosis.
arXiv preprint arXiv:2003.13620 (2020).

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT. ACL,
4171–4186.

[10] Carl Doersch, Abhinav Gupta, and Alexei A Efros. 2015. Unsupervised visual rep-
resentation learning by context prediction. In Proceedings of the IEEE international
conference on computer vision. 1422–1430.

[11] M. D. Donsker and S. R.S. Varadhan. 1976. Asymptotic evaluation of certain
Markov process expectations for large time—III. Communications on Pure and
Applied Mathematics 29, 4 (July 1976), 389–461.

[12] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin A. Riedmiller, and Thomas
Brox. 2014. Discriminative Unsupervised Feature Learning with Convolutional
Neural Networks. In Advances in Neural Information Processing Systems. 766–774.

[13] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. 2021. SLAPS: Self-
Supervision Improves Structure Learning for Graph Neural Networks. arXiv
preprint arXiv:2102.05034 (2021).

[14] Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris,
Florent Krzakala, and Lenka Zdeborová. 2019. Entropy and mutual information
in models of deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment 2019, 12 (2019), 124014.

[15] Xiang Gao, Wei Hu, and Guo-Jun Qi. 2021. Unsupervised Learning of Topology
Transformation Equivariant Representations.

[16] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. 2018. Unsupervised Repre-
sentation Learning by Predicting Image Rotations. In International Conference on
Learning Representations.

[17] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics.
JMLR Workshop and Conference Proceedings, 297–304.

[18] William L Hamilton. 2020. Graph representation learning. Synthesis Lectures on
Artifical Intelligence and Machine Learning 14, 3 (2020), 1–159.

[19] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS’17). 1025–1035.

[20] Jiangfan Han, Ping Luo, and Xiaogang Wang. 2019. Deep self-learning from
noisy labels. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 5138–5147.

[21] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.

13

Yu Wang, Wei Jin, and Tyler Derr

PMLR, 4116–4126.
[22] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Networks. In
International Conference on Learning Representations.

[23] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. In KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM,
1857–1867.

[24] Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou Sun. 2019. Pre-
training graph neural networks for generic structural feature extraction. arXiv
preprint arXiv:1905.13728 (2019).

[25] Dasol Hwang, Jinyoung Park, Sunyoung Kwon, KyungMin Kim, Jung-Woo Ha,
and Hyunwoo J Kim. 2020. Self-supervised Auxiliary Learning with Meta-paths
for Heterogeneous Graphs. In Advances in Neural Information Processing Systems,
Vol. 33. 10294–10305.

[26] Soobeom Jang, Seong-Eun Moon, and Jong-Seok Lee. 2019. Brain signal clas-
sification via learning connectivity structure. arXiv preprint arXiv:1905.11678
(2019).

[27] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong
Zhu. 2020. Sub-graph Contrast for Scalable Self-Supervised Graph Represen-
tation Learning. In 20th IEEE International Conference on Data Mining, ICDM
2020, Sorrento, Italy, November 17-20, 2020, Claudia Plant, Haixun Wang, Alfredo
Cuzzocrea, Carlo Zaniolo, and Xindong Wu (Eds.). IEEE, 222–231.

[28] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, SuhangWang, Zitao Liu, and Jiliang
Tang. 2020. Self-supervised learning on graphs: Deep insights and new direction.
arXiv preprint arXiv:2006.10141 (2020).

[29] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. 2021.
Node Similarity Preserving Graph Convolutional Networks (WSDM ’21). ACM,
148–156.

[30] George Karypis and Vipin Kumar. 1995. Multilevel graph partitioning schemes.
In ICPP (3). 113–122.

[31] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[32] Dongkwan Kim and Alice Oh. 2021. How to Find Your Friendly Neighborhood:
Graph Attention Design with Self-Supervision. In International Conference on
Learning Representations.

[33] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR.

[34] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In International Conference on Learning
Representations.

[35] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. 2020. Contrastive repre-
sentation learning: A framework and review. IEEE Access (2020).

[36] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association
for Computational Linguistics, 7871–7880.

[37] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[38] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. ACL, 1412–
1421.

[39] Franco Manessi and Alessandro Rozza. 2020. Graph-Based Neural Network
Models with Multiple Self-Supervised Auxiliary Tasks. arXiv preprint arXiv:
2011.07267 (2020).

[40] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Esti-
mation of Word Representations in Vector Space. In 1st International Conference
on Learning Representations, ICLR 2013, Workshop Track Proceedings.

[41] Jennifer Neville and David Jensen. 2000. Iterative classification in relational data.
In Proc. AAAI-2000 workshop on learning statistical models from relational data.
13–20.

[42] Mark Newman. 2018. Networks. Oxford university press.
[43] Mehdi Noroozi and Paolo Favaro. 2016. Unsupervised learning of visual repre-

sentations by solving jigsaw puzzles. In European conference on computer vision.
Springer, 69–84.

[44] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Train-
ing Generative Neural Samplers using Variational Divergence Minimization. In
Advances in Neural Information Processing Systems, Vol. 29.

[45] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[46] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2018. Adversarially Regularized Graph Autoencoder for Graph Embedding. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI. 2609–2615.

[47] Liam Paninski. 2003. Estimation of entropy and mutual information. Neural
computation 15, 6 (2003), 1191–1253.

[48] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young
Choi. 2019. Symmetric graph convolutional autoencoder for unsupervised graph
representation learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 6519–6528.

[49] Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-Ming Wu, and Qinghua Zheng.
2020. Self-supervised graph representation learning via global context prediction.
arXiv preprint arXiv:2003.01604 (2020).

[50] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 1150–1160.

[51] Ellen Riloff. 1996. Automatically generating extraction patterns from untagged
text. In Proceedings of the National Conference on Artificial Intelligence. 1044–1049.

[52] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,
and Junzhou Huang. 2020. Self-Supervised Graph Transformer on Large-Scale
Molecular Data. Advances in Neural Information Processing Systems 33 (2020).

[53] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data
augmentation for deep learning. Journal of Big Data 6, 1 (2019), 1–48.

[54] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. InfoGraph:
Unsupervised and Semi-supervised Graph-Level Representation Learning via
Mutual Information Maximization. In 8th International Conference on Learning
Representations, ICLR.

[55] Ke Sun, Zhouchen Lin, and Zhanxing Zhu. 2020. Multi-stage self-supervised
learning for graph convolutional networks on graphs with few labeled nodes. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 5892–5899.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems. 5998–6008.

[57] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax.. In International Conference on
Learning Representations (Poster).

[58] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations.

[59] Nicolas Vercheval, Hendrik De Bie, and Aleksandra Pizurica. 2020. Variational
Auto-Encoders Without Graph Coarsening For Fine Mesh Learning. In IEEE
International Conference on Image Processing, ICIP. IEEE, 2681–2685.

[60] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
2008. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning. 1096–1103.

[61] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and
computing 17, 4 (2007), 395–416.

[62] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.
Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management. 889–898.

[63] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020).

[64] Yaochen Xie, Zhao Xu, Zhengyang Wang, and Shuiwang Ji. 2021. Self-
Supervised Learning of Graph Neural Networks: A Unified Review. arXiv preprint
arXiv:2102.10757 (2021).

[65] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[66] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International Conference on Machine Learn-
ing. PMLR, 5453–5462.

[67] Jiaxuan You, JonathanGomes-Selman, Rex Ying, and Jure Leskovec. 2021. Identity-
aware Graph Neural Networks. arXiv preprint arXiv:2101.10320 (2021).

[68] Jiaxuan You, Zhitao Ying, and Jure Leskovec. 2020. Design Space for Graph
Neural Networks. In Advances in Neural Information Processing Systems, Vol. 33.
17009–17021.

[69] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph Contrastive Learning with Augmentations. In Advances
in Neural Information Processing Systems, Vol. 33. 5812–5823.

[70] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. 2020. When does
self-supervision help graph convolutional networks?. In International Conference
on Machine Learning. PMLR, 10871–10880.

[71] Richard Zhang, Phillip Isola, and Alexei A Efros. 2016. Colorful image colorization.
In European conference on computer vision. Springer, 649–666.

14

Graph Neural Networks: Self-supervised Learning

[72] Shichang Zhang, Ziniu Hu, Arjun Subramonian, and Yizhou Sun. 2020. Motif-
Driven Contrastive Learning of Graph Representations. arXiv preprint
arXiv:2012.12533 (2020).

[73] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2020. Deep learning on graphs: A
survey. IEEE Transactions on Knowledge and Data Engineering (2020).

[74] Qikui Zhu, Bo Du, and Pingkun Yan. 2020. Self-supervised training of graph
convolutional networks. arXiv preprint arXiv:2006.02380 (2020).

[75] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[76] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph Contrastive Learning with Adaptive Augmentation. In Proceedings of The
Web Conference 2021 (WWW ’21). ACM, 12 pages.

[77] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. (2002).

[78] Marinka Zitnik and Jure Leskovec. 2017. Predictingmulticellular function through
multi-layer tissue networks. Bioinformatics 33, 14 (2017), i190–i198.

[79] Marinka Zitnik, Jure Leskovec, et al. 2018. Prioritizing network communities.
Nature communications 9, 1 (2018), 1–9.

15

	Abstract
	1 Introduction
	2 Self-supervised Learning
	3 Applying SSL to GNNs: Categorizing Training Strategies, Loss Functions and Pretext Tasks
	3.1 Training Strategies
	3.2 Loss Functions
	3.3 Pretext Tasks

	4 Node-level SSL Pretext Tasks
	4.1 Structure-based Pretext Tasks
	4.2 Feature-based Pretext Tasks
	4.3 Hybrid Pretext Tasks

	5 Graph-level SSL Pretext Tasks
	5.1 Structure-based Pretext Tasks
	5.2 Feature-based Pretext Tasks
	5.3 Hybrid Pretext Tasks

	6 Node-graph-level SSL Pretext Tasks
	7 Discussion
	8 Conclusion
	References

