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Abstract—In this work, we perform a large-scale investigation
of teacher connections in online social media. To this end, we
first construct a large dataset of teachers on Pinterest, an image-
based popular online social media. Our dataset includes 540
teachers across 5 states and 48 districts, as well as thousands of
connections they have established. Then, considering some crucial
teacher-related attributes (e.g., their states and grade levels), we
characterize direct and indirect teacher connections. Through
this characterization, we discover that teachers are predominately
connected to their peers in the same district or at least within the
same state, and seldom there exist links between teachers outside
their districts and states. This hinders the proper diffusion of
information and many other advantages that a teacher-teacher
connection in an online social media can bring about, e.g., getting
advice from their peers. To alleviate this problem, we utilize
advances in machine learning and propose a link recommendation
system suggesting teachers connect with their similar peers on
Pinterest. Our system’s evaluation reveals that many new teacher-
teacher connections are suggested, which leads to a more cohesive
network among teachers rather than the existing localized ego
networks.

Keywords— teachers, social media, Pinterest, link recom-
mendation, network analysis

I. INTRODUCTION

Online social media platforms have connected billions of
people across the globe. Thanks to their free, fast, easy-to-use
nature and network across geography, information across online
social media is diffused almost instantaneously. In addition to
personal purposes, many individuals utilize online social media
to improve their professional activities. Within education, many
teachers utilize online social media to enhance their educational
activities [1], [2], [3], [4], [5]. One of the primary drivers of
teachers to turn to online social media is to supplement their
instructional and educational resources. In the classroom, many
teachers encounter needing additional pedagogical resources
to improve their students’ learning. Traditional means of
educational resource curation (e.g., asking a colleague) is time-
consuming and not scalable. In contrast, seeking out educational
resources from other teachers in online social media is easily
accessible. Additionally, teachers may access resources from
those teachers they most admire or perceived expert teachers.
The diffusion of resources can be rapid, within the same day, and
teachers may integrate resources into their classroom practice
quickly and efficiently. In addition to resource supplements,
some teachers utilize online social media to seek advice from
their peers, share ideas, interact with each other via various
online interactions, and so on [6].

Although there is a substantial amount of evidence showing
the usefulness of online social media for teachers seeking
additional resources [1], [7], social media services (e.g., Pinterest
or Twitter) have millions of users and billions of posts. Teachers
and their educational resources are likely buried. Therefore,
it is unclear how teachers who use online social media for
professional career development are connected. Thus, it is
essential to understand and consequently facilitate teacher-
teacher connections, which can have numerous benefits, includ-
ing quicker and more efficient diffusion of resources. Aiming
to understand teacher connections and subsequently devising
a system to encourage teacher-teacher connections in online
social media, we take three crucial steps in this paper. First, we
construct a large dataset of teachers on Pinterest. Second, we
thoroughly explore and analyze the data to characterize teachers’
connections on Pinterest. Notably, we compute likelihoods for a
social tie while considering a set of teacher-related attributes that
might relate to the connection a teacher establishes with another
one. Third, we propose an effective and scalable method to
recommend teachers in online social media. This system utilizes
advances in machine learning and social network analysis and
automatically learns salient features from Pinterest’s network.
To the best of our knowledge, this is the first attempt to
promote teacher connections that have the great potential to boost
teachers’ activities and the diffusion of educational resources.
In summary, our contributions are as follows.
• We construct the first known large-scale dataset of teachers

on Pinterest.
• We thoroughly analyze the connections that teachers establish

with other users on social media and provide new insights.
• We propose a link recommendation method harnessing the

advances in social network analysis and machine learning.

II. RELATED WORK

Teachers in social media. Steinbrecher and Hart [8] investi-
gated how teachers use Facebook for personal and professional
purposes. They found that pre-service educators use Facebook
mostly for personal purposes and seldom professionally. Several
studies have shown evidence that teachers increasingly use
Twitter for professional purposes, e.g., resource sharing [9],
[10], [11]. Carpenter et al. [12] studied how Pinterest is used
for educational purposes. They indicated that teachers use
Pinterest to promote educational materials. In particular, they
discovered that many individuals were sharing resources curated
in TeachersPayTeachers.com, a crucial virtual resource pool



where teachers may sell/buy various educational resources.
Frank et al. [7] thoroughly analyzed the role of social networks
and, in particular, showed that Pinterest is providing emerging
beneficial opportunities for education. The authors pointed out
that teachers in online social networks can act as valuable sources
for one another. More specifically, they can spread their expertise,
which can aid in reduced teacher differences in education.
Another study focusing on teachers’ usage of Pinterest [13],
conducted for 117 teachers, showed that teachers mostly utilize
Pinterest to look for educational resources according to their
classroom needs. Torphy et al. [14] examined the diffusion
of educational resources on Pinterest. Their results indicated
that direct connection between teachers spurs resource curation.
Moreover, they showed that Pinterest acts as a promising bridge
between teachers helping to diffuse educational resources.

Link recommendation for social networks is an active
research area in machine learning. There are two families of
link recommendation approaches: learning-based and proximity-
based. In the former, a model is trained from the previously
observed link establishments, while in the latter, a surrogate is
used to proximate the connection establishment between two
nodes [15]. Our link recommendation method (Section V) belong
to proximity-based method. More specifically, similar to [16],
we determine the proximity between two nodes (teachers) based
on their structural attributes in the Pinterest network. Interested
readers can refer to [15] for a review of link recommendations
for social networks.

III. DATA

We surveyed 540 teachers across 5 states (Michigan, Illinois,
Texas, Indiana, and Ohio), 48 districts, and 99 schools. 428
teachers are females, 13 males, and 99 unspecified. For all sur-
veyed teachers, we acquired their Pinterest handles (usernames),
and then through the API (application programming interface)
provided by Pinterest, we collected their data from Pinterest. We
downloaded 1,205,631 pins shared by the end of Feb 2019. For
each teacher, we obtained the list of their followers and followees.
A follower is someone who follows that specific teacher, while
a followee is someone who is followed by that teacher. For
all followees and followers, we retrieved their pins and the
list of their connections (i.e., their own followers/followees).
Once all connections are identified, we constructed the entire
network of our Pinterest users, including the surveyed teachers
and their followers/followees. Figure 1 demonstrates the degree
distribution where the number of followers and followees
are combined. Similar to other (online) social networks, the
distributions follow the power-law distribution [17], where most
of the nodes have a smaller number of connections and a very
small percentage have high degrees. The average degree (i.e.,
the mean number of connections) is 269.

TABLE I
STATISTICS OF THE PINTEREST NETWORK

# Teachers 540 # links
between teachers 1,059

# Other users 98,667 # Links between
teachers and others 117,169

# Total users 99,207 # Total links 6,119,338
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Fig. 1. Degree distribution of teachers on Pinterest network

IV. TEACHER CONNECTIONS CHARACTERIZATION

To deepen our understanding of teacher connections on Pin-
terest, we characterize their connections while considering some
teacher-related attributes. For these attributes, we characterize
direct and indirect teacher connections explained in Section IV-A
and IV-B, respectively.1

A. Direct connection characterization

Given the network of teachers on Pinterest, we evaluate several
conditional probabilities in the following format.

P (Ti attribute Tj | Ti — Tj) (1)

where Ti and Tj are two sample teachers, attribute denotes an
attribute we consider to investigate teacher-teacher connections,
and Ti — Tj denotes a connection between teachers Ti and
Tj on our constructed Pinterest network. Through Eq. (1), we
attempt to evaluate how likely two teachers have a specific
attribute (i.e., Ti attribute Tj) given that the two teachers are
directly connected on Pinterest (i.e., Ti — Tj).

B. Indirect connection characterization

Teachers on Pinterest can be connected indirectly through a
common Pinterest user. Hence, to better characterize teacher
connections on Pinterest, we extend the characterization for-
mulated in Eq (1) beyond a direct connection between two
teachers and consider the case when two teachers are indirectly
connected by an intermediate user who can be another teacher
or a Pinterest user unknown to us. One reason to consider the
indirect connection is that a teacher may acquire a resource that
does not necessarily come from his/her direct connections and
may have been curated by other teachers connected indirectly
to her/his. Moreover, to enhance information diffusion and
mutual collaboration, we might spur a direct connection between
two teachers having a common attribute (e.g., teaching at the
same deistic or the same grade level) while they are connected
indirectly. Given the above discussion, we evaluate a conditional
probability for some attributes between two teachers who are
connected indirectly:

P (Ti attribute Tj | Ti — U — Tj AND Ti –× – Tj) (2)

1The content of this section has been previously published in our work-in-
progress paper [4].
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Fig. 3. The virtual network (Pinterest)

where U denotes a Pinterest user bridging teachers Ti and Tj
and Ti – × – Tj signifies that there is no direct connection
between Ti and Tj.

C. Teacher-related Attributes

We evaluate teacher connections (either direct or indirect) by
considering two sets of teacher-related attributes, i.e., geograph-
ical and professional attributes. For geographic attributes, we
consider school, district, state, and physical link. The reason for
including the latter is that physical connections are manifested in
a face to face social network among teachers, which is obviously
bound to geographic constraints. For professional attributes, we
consider grade level and number of shared resource(s) between
two teachers. A shared resource is defined as a pin that is saved
(pinned) by both teachers. We consider a binary case whether
any number of resources has been shared or none.

D. Physical versus Virtual Network

To further help characterize teacher connections on Pinterest
better, we compare physical and Pinterest (virtual) networks of
teachers. Figure 2 and Figure 3 illustrate these two networks,
respectively. A link is established between two teachers in the
physical network if one has sought teaching advice from the
other. Moreover, we de-identify teachers and denote them a TN,
where N is a random number in the range [1, 540] assigned to
each teacher. Note that physical edges are only available for a
subset of teachers, namely 104 out of the 540 total teachers.

E. Results

In this section, we present the results for teacher connections
characterization. Table II shows the results for the charac-
terization of direct teacher-teacher connections (i.e, Eq. (1))
while Table III demonstrates the results for indirect connections
between teachers (i.e., Eq. (2)). Note that, for each attribute,
we have included the conditional probability of its negation as
well.
Q1: Do geographical attributes affect teacher connections
on Pinterest?

TABLE II
RESULTS OF DIRECT TEACHER CONNECTIONS CHARACTERIZATION

ACCORDING TO EQ. 1

Attribute Probability

G
eo

gr
ap

hi
c

P (Ti the same school Tj | Ti — Tj) 557/1059 = 52.13%
P (Ti different school Tj | Ti — Tj) 507/1059 = 47.87%
P (Ti the same district Tj | Ti — Tj) 1016/1059 = 95.94%
P (Ti different district Tj | Ti — Tj) 557/1059 = 4.06%
P (Ti the same state Tj | Ti — Tj) 1056/1059 = 99.71%
P (Ti different state Tj | Ti — Tj) 3/1059 = 0.29%
P (Ti physical link Tj | Ti — Tj) 31/81 = 38.27%

P (Ti no physical link Tj | Ti — Tj) 50/81 = 61.73%

Pr
of

es
si

on
al P (Ti the same grade level Tj | Ti — Tj) 230/895 = 25.69%

P (Ti different grade level Tj | Ti — Tj) 665/895 = 74.31%
P (Ti shared resource Tj | Ti — Tj) 1059/1059 = 100%

P (Ti no shared resources Tj | Ti — Tj) 0/1059 = 0%

TABLE III
THE RESULTS OF INDIRECT TEACHER CONNECTIONS CHARACTERIZATION

ACCORDING TO EQ. 2

Attribute Probability
G

eo
gr

ap
hi

c
P (Ti the same school Tj | Ti – U – Tj) 878/28040 = 3.13%
P (Ti different school Tj | Ti – U – Tj) 27162/28040 = 96.87%
P (Ti the same district Tj | Ti – U – Tj) 5005/28040 = 17.84%
P (Ti different district Tj | Ti – U – Tj) 23035/28040 = 82.16%
P (Ti the same state Tj | Ti – U – Tj) 10210/28040 = 36.41%
P (Ti different state Tj | Ti – U – Tj) 17830/28040 = 63.59%
P (Ti physical link Tj | Ti – U – Tj) 25/1251 = 2.00%

P (Ti no physical link Tj | Ti – U – Tj) 1226/1251 = 98.00%

Pr
of

es
si

on
al P (Ti the same grade level Tj | Ti – U – Tj) 3473/24296 = 14.29%

P (Ti different grade level Tj | Ti – U – Tj) 20823/24296 = 85.71%
P (Ti shared resource Tj | Ti – U – Tj) 28040/28040 = 100%

P (Ti no shared resources Tj | Ti – U – Tj) 0/28040 = 0%

The results in Table II show that being at the same school
does not have much bearing on two teachers being connected on
Pinterest, where a noticeable number of teachers from different
schools are connected. It is promising that teachers are being
connected to their peers outside their schools. However, the
results are opposite for attributes state and district where we
can observe that a large majority of connections are between
teachers who are coming from the same state and even the
same district. In other words, this shows that whether two
teachers are connected is predominately based on whether they
are coming from the same district/state. Thus, the likelihood
of teachers being connected outside their states and districts is
minimal. Interestingly, the results are opposite for intermediate
connections where, according to Table III, we can observe that
the likelihood of two teachers from different schools, districts,
and states being bridged by a third person/user (conditioned
on that they are not directly connected) is significantly high.
Hence, this analysis provides an affirmative answer to the crucial
question that are teachers mostly connected to their peers in the
same district/state? Also, Figure 3 demonstrates the localized



nature of teacher-teacher connections on Pinterest, where nodes
within a component tend to have the same color (the same
district). Another noticeable phenomenon is the effect of attribute
physical link. According to results presented in Tables II and III,
the physical connections have a low likelihood to be reflected
on Pinterest. We speculate this is because the teachers might
not feel to seek further advice from their colleagues online, and
mostly physical interactions suffice them. We believe following
up on this topic deserves further investigation and will leave it
for the future.
Q2: Are professional attributes of teachers related to their
connections on Pinterest?

As for the grade level, we can observe from Tables II and III
that not necessarily teaching at the same grade drives teacher
connections. This is promising as teachers are not confined to
their peers at the same grade level, and connections are driven
by the broader notion of teacher rather than a specific grade
level. Note that we removed teachers with unspecified grade
level from this analysis. Moreover, we can observe that for
both direct teacher and indirect connections, the presence of a
shared resource is strongly related to the connection. For a direct
teacher-teacher connection, this is not very surprising since, after
all, teachers connect to their peers to acquire resources. For
indirect connections, nevertheless, this is quite interesting and
asks for further explanation. First, note that such a resource
does not necessarily need to be curated by either of the two
teachers, and it is possible that they both acquired it from the
same source. Second, regardless of the producer or the source
of the resource(s), the value of 100% for the shared resource(s)
attribute in Table III signifies that the resources are in the interest
of both teachers while they have likely been diffused to them
via some third party.

V. PROPOSED METHOD FOR LINK RECOMMENDATION

On the one hand, we analyzed our Pinterest network of
teachers and discovered that many teacher-teacher connections
are confined to the geological constraints –in particular district
and state. On the other hand, we would expect online social
media to break physical limitations and connect teachers
anywhere. We propose a link recommendation system attempting
to connect teachers beyond their physical realm to address this
issue. First, we present motivations for this system, followed
by describing it and evaluating the proposed method.

A. Motivation

One might first wonder that since we identified a sample of
teachers on Pinterest, why not just connect them all together. In
other words, instead of designing a link recommendation system,
we can simply recommend every teacher to every other teacher.
This has an undesirable consequence. Human’s attention and the
extent to which they can consume information on online social
media are very limited [18], [19] and by trivially connecting
everyone to everyone (here all teachers), we overwhelm users
with an excessive amount of information and discourage them
from using the social media. Although Pinterest already has a
link recommendation method established in the social media
platform, it will contain both teachers and non-teachers (which
is by far the larger portion of the social network compared
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Fig. 4. An illustration of the link recommendation system

to the number of teachers). Thus, if their recommendation list
contains both, then it would require a time-consuming process
for a teacher to sort through to determine which are indeed
teachers. Essentially, this would put the burden on the teachers to
investigate the “why” they are being recommended a given user
(e.g., for personal or perhaps professional reasons). Hence, we
need an enhanced ranking system prioritizing the recommended
links, which is the subject of this section.

B. Teacher Link Recommendation

Our proposed method for link recommendation is illustrated
in Figure 4. It consists of two important components, including
a node representation learning and a ranking system, described
as follows.

Node representation learning. We are tasked to identify new
teacher-teacher links on Pinterest. To accomplish this, first, we
need to extract features from our dataset. Feature extraction
from the Pinterest network is carried out using an advanced
social network analysis method known as node representation
learning [20], [21], [22]. In this approach, we automatically learn
a numerical representation that encodes structural information
embedded in the network for every node in a given network. We
adopt the method proposed by Tang et al. [23] known as LINE
(Large-scale information network embedding). Here the general
idea is that representations are learned such that if two nodes
have a link between them, then their representations will be more
similar. As illustrated in Figure 4, the system takes as the input
the Pinterest network and outputs a numerical representation for
each node, including teachers. The size of the representation
for each node is 64.

Ranking system. Once we obtain the representation for each
user, we start the ranking process described as follows. The
core of the ranking system is determining similarity between
a teacher (i.e., its learned representation) and other nodes on
the Pinterest network. To this end, we use cosine similarity
formulated in the following:

C(X,Y ) =
< X,Y >

||X|| × ||Y ||
(3)

where X and Y are learned node representations, <.,.> denotes
the dot product operator, and ||.|| is the `2 norm of a vector.
The cosine similarity is between 0 and 1 where higher values
indicate higher similarities. Further, for each teacher, we acquire
its cosine similarity against all other nodes in the network.
Since the network has many nodes, we sort the similarities and
consider only the top K ranked nodes, where K is a pre-defined
cut-off threshold. Finally, for the ranked list of K nodes, we
start evaluating the performance of the method described next.
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Fig. 5. Number of connected components of the Pinterest network of teachers
for different cut-off thresholds
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Fig. 6. The promoted network having the recommended connections been
established (K=220)

C. Evaluation

In this part, we present the experimental results and evaluate
the performance of our method. Recall that the primary motiva-
tion of this paper is promoting teacher-teacher connections on
Pinterest. More specifically, we attempt to increase connectivity
among teachers so they can exchange resources and ideas.
Consequently, our evaluations are aligned with this direction.
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Fig. 7. The absolute number of introduced connections

Number of introduced connections
We expect our link recommendation system to introduce new

teacher-teacher connections. Now we evaluate how effective our
system is in this regard. To this end, for a given K and a teacher,
we identify the number of new teacher-teacher connections in the
top K ranked list. Then we sum up all of the new connections for
all teachers. Figure 7 shows the number of new recommended
teacher-teacher connections while Figure 8 shows the ratio of the
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Fig. 8. Ratio of introduced connections to all recommended connections

new connections to the total number of recommended teacher-
teacher connections. As can be observed from these figures, even
for small values of K (e.g., K=10), the method successfully
recommends new teacher-teacher connections.
The network of teachers

As we explained in Section IV and demonstrated in Figure 3,
the Pinterest network for our surveyed teachers is a disconnected
network and consists of many sub-networks (i.e., components).
Now we investigate the network of our teachers on Pinterest once
new connections are established. To this end, we compute the
number of components of the network. Figure 5 demonstrates the
number of components of the new network versus the threshold
K. We can observe that compared to the existing current network,
the promoted network enjoys a higher degree of connectivity.
As K increases, the network becomes more connected. . We
also provide a visualization of the new network in Figure 6.
Compared to the existing network – see Figure 3 – we have a
more dense network while teachers from distinct districts are
connected as well.
Geographic factors on teacher-teacher connections

In Section IV, we showed that teachers are predominantly
connected to their peers in the same district or state. Now
it would be interesting to see if geographical factors are still
related to the teacher-teacher connections. To this end, we again
compute the conditional probabilities developed to characterize
teacher-teacher connections for the new network. Table IV
shows the results for both the existing Pinterest network and the
promoted one. We can observe that new connections beyond
geographic constraints have been formed. Hence, our proposed
link recommendation system can effectively overcome the
shortcoming of the Pinterest network regarding teacher-teacher
connections.

D. Case study: Teacher identification

In this part, we present a case study that shows how our
proposed link recommendation method can help us identify users
on Pinterest who are likely to be teachers (but yet unknown
to us). To this end, we extract and then merge their top 300
ranked users into a single list for each of our teachers. Then
we retrieve the most common user, i.e., the one most frequently
recommended to existing teachers under the condition the user is
not already among our 540 teacher sample. We carefully verified
this user’s profile and retrieved some information about them,
which is demonstrated in Table V. Several strong indications



TABLE IV
COMPARING THE INFLUENCE OF GEOGRAPHIC CONSTRAINTS BETWEEN THE

EXISTING NETWORK AND THE PROMOTED ONE

Attribute Existing
network

Promoted
network

P (Ti the same school Tj | Ti — Tj) 52.13% 15.29%

P (Ti different school Tj | Ti — Tj) 47.87% 84.71%

P (Ti the same district Tj | Ti — Tj) 95.94% 44.44%

P (Ti different district Tj | Ti — Tj) 4.06% 55.56%

P (Ti the same state Tj | Ti — Tj) 99.71% 67.11%

P (Ti different state Tj | Ti — Tj) 0.29% 32.25%

P (Ti physical link Tj | Ti — Tj) 38.27% 25.19%

P (Ti no physical link Tj | Ti — Tj) 61.73% 74.81%

Fig. 9. Several sample resources saved (pinned) by the user identified as teacher

are showing that this person is indeed a teacher. First, more
than 40% of their his/her resources have been categorized as
‘education’ (according to Pinterest). Second, he/she has saved
many resources acquired from TeachersPayTeachers.com. More
than 60% of his/her resources (pins) are shared among our
sampled teachers. Several boards in his/her profile (e.g., For
the Classroom) particularly created to maintain educational
pins –mostly from TeachersPayTeachers.com. Figure 9 illustrates
several resources collected (i.e., pinned) by this person. We can
observe that resources are related to K-12 education.

Thus, this provides us with a very satisfying result of
confidence that our proposed link recommendation method can
help discover unidentified teachers on Pinterest. It is worth noting
that we have developed a systematic and scalable approach to
automatically mark unknown users who are likely to be teachers
and thus augment the teacher dataset [5].

VI. CONCLUSION

In this paper, we thoroughly analyzed teachers’ connections
and discovered that many teacher-teacher connections are
confined to geographical factors such as state and district.
To address this issue, we proposed a link recommendation
method. The method first takes advantage of the structure of
the Pinterest network and automatically extracts salient features
from the network for each user. We evaluated the performance
of the proposed method and showed many new connections
would be introduced. More importantly, we showed that the

TABLE V
SOME ATTRIBUTES OF THE USER IDENTIFIED AS A TEACHER.

Attribute Value

# Resources (pins) 1284
# Educational resources (pins) 555

# Resources from
TeachersPayTeachers.com 95

# Connections 55
# Shared resources with our teachers 803

# Connections to our teachers 9
# Boards 26

Sample education-related
board names

For the Classroom
Crushing Comprehension

Math Madness
Letters. Sounds. & Word Work

new recommended links are no longer confined to geographic
factors.
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