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ABSTRACT
A growing trend recently is to harness the structure of today’s big
data, where much of the data can be represented as graphs. Simulta-
neously, graph convolutional networks (GCNs) have been proposed
and since seen rapid development. More recently, due to the scala-
bility issues that arise when attempting to utilize these powerful
models on real-world data, methodologies have sought the use of
sampling techniques. More specifically, minibatches of nodes are
formed and then sets of nodes are sampled to aggregate from in one
or more layers. Among these methods, the two prominent ways are
based on sampling nodes from either a local or global perspective.
In this work, we first observe the similarities in the two sampling
strategies to that of epidemic and diffusion network models. Then
we harness this understanding to fuse together the benefits of sam-
pling from both a local and global perspective while alleviating
some of the inherent issues found in both through the use of a
low-dimensional approximation for the path-based Katz similarity
measure. Our proposed framework, Epidemic Graph Convolutional
Network (EGCN), is thus able to achieve improved performance
over sampling from just one of the two perspectives alone. Em-
pirical experiments are performed on several public benchmark
datasets to verify the effectiveness over existing methodologies
for the node classification task and we furthermore present some
empirical parameter analysis of EGCN.
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1 INTRODUCTION
Recently much of the big data that is being created inherently has
an underlying structure. Thus, a growing trend is to try and harness
this structure by representing the data in the form of graphs, such
that hopefully more meaningful analysis and predictions can be
made from the data. Simultaneously, graph convolutional networks
(GCNs) [7, 13, 17, 22, 29, 37], which are adaptations from the classi-
cal convolutional neural networks[31] for graph structured data,
have seen rapid development. This is primarily due to their fruitful
usage in a variety of tasks such as node classification[11, 22, 29],
link prediction[16, 39, 46], community detection[6, 8, 10], and rec-
ommendation [19, 42, 44].

In [29] a GCN was presented that was able to achieve superior
performance in the semi-supervised node classification tasks, but
lacked the scalability to handle larger networks. Thus, recent work
has focused on sampling methods that can be used to allow these
powerful neural networkmodels to be applicable tomore real-world
networks. More specifically, these more recent GCNs are trained in
minibatch form and utilize the sampling techniques to provide a set
of nodes to aggregate from.While these methods can still be applied
in the typical GCN format of having multiple layers of aggregation
(e.g., typically two layers are used) they both have their unique
nuances that can both benefit and unfortunately hinder the training
process towards obtaining a well-performing trained model.

Among the sampling methods used, the two most prominent
are based on sampling nodes at either a local or global perspective.
GraphSAGE [22] was the first work towards performing a localized
sampling for each minibatch node. Their main idea is to first con-
struct a minibatch, and then for each of the nodes, they uniformly
sample a set of up to s nodes from their set of neighbors, which is
recursively applied for each of the layers. In this fashion, only a
localized view is obtained and dependent on the number of layers in
the model. However, the number of samples required grows expo-
nentially in terms of s with the number of layers. Furthermore, even
with more layers, this results in a smoothing effect over the aggre-
gated signal due to a node aggregating from such a large portion of
the graph. Thus, FastGCN [9] was introduced that performs a global
sampling, which mainly focused on alleviating the issue related
to the exponential growth in the number of required locally sam-
pled nodes. More specifically, their sampling is performed upon for
each layer by independently sampling a set of nodes according to a
global distribution of node importance. Thus, rather than sampling
for each node according to their local neighborhood, they instead
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focus on sampling a subset of globally important nodes and then
aggregating from that set. However, although the sample size grows
linearly in terms of s with the number of layers, for larger graphs
it becomes more difficult to obtain a meaningful global sample that
is connected to the set of nodes in the minibatch. In this work, we
seek to harness the power of both the local and global sampling,
while also avoiding the pitfalls from each respective method.

Although it is clear that a better sampling methodology is de-
sired, it is still unclear how to overcome the associated challenges
in both the local and global methods. For example, in both sampling
methods, we face the challenge of not being able to easily aggregate
information from a larger perspective. With the local sampling
we face the challenge that the size of the sampled set grows ex-
ponentially and also that due to a uniform sampling we would
be susceptible to be influenced by noisy (or perhaps adversarially
constructed) links. The global method in comparison, especially
on larger graphs, would potentially struggle to have nodes in the
minibatch connect to the sampled set due to requiring direct links to
those sampled. Thus, we seek to solve these challenges while com-
bining the two sampling methods by first drawing the connection
of these methods to classical epidemic and diffusion network mod-
els [27, 36]. Then, given these insights, we formulate our proposed
Epidemic Graph Convolutional Neural Network (EGCN).

Our proposed framework is built on utilizing a low-dimensional
approximation of the path-based Katz similarity measure [25] to-
wards merging the local and global sampling methodologies. More
specifically, the use of this similarity measure is able to provide us
with a mechanism for restricting the local sampling to the top-s
most similar nodes, while also allowing for a more meaningful
weighted aggregation according to this similarity measure (thus
avoiding potentially spurious or noisy links). In the case of the
global sampling, we harness the Susceptible-Infected-Susceptible
(SIS) epidemic model [36] where those nodes currently infected
are used as our sampled set. We present an analysis that shows
those more often infected are nodes having higher centrality. Then,
through the use of the approximated similarity measure, we are
able to proportionally aggregate from the entire globally important
set of infected nodes during the training process alleviating the
disconnected problem in traditional global sampling. This allows
our proposed Epidemic Graph Convolutional Network to aggregate
from the most meaningful local neighborhood, while also incorpo-
rating weighted information from a globally important set of nodes.
Our major contributions are listed as follows:

• Propose the use of both local and global sampling meth-
ods together in a principled approach that utilizes a low-
dimensional approximation of the Katz similarity measure to
overcome some of the challenges associated in each method.

• We analyze the relation between current GCN sampling
methods to that of classical epidemic and diffusion models,
where we then harness this knowledge towards construct-
ing our proposed Epidemic Graph Convolutional Network
(EGCN) framework.

• Conduct experiments on three real-world datasets to show
the effectiveness of our proposed EGCN framework towards
the node classification task, while also providing a parameter
analysis to better understand EGCN.

The rest of the paper is organized as follows. In Section 2, we
describe the node representation learning problem. Some back-
ground about GCNs as well as epidemic and diffusion modeling
are provided in Section 3. In Section 4, we motive and introduce
the proposed Epidemic GCN (EGCN). In Section 5 we perform ex-
perimental study and present some parameter analysis. Section 6
summarizes the related works and we conclude in Section 7.

2 PROBLEM STATEMENT
We aim to learn inductive node representations in a network for
the node classification task. Thus, here we introduce the needed
notations and formally define the problem.

A graph can be represented as Ga = {Va, Ea }, where Va =

{va1, . . . ,vaNa } is the set of Na nodes and Ea = {ea1, . . . , eaMa }

is the set of Ma edges. The connections between nodes in graph
Ga can be also summarized as an adjacency matrix Aa ∈ RNa×Na ,
where Aa[i , j] = 1 only when there is an edge between node vai
and node vaj , otherwise 0. Each node vai is associated with a
feature vector xai ∈ R1×d . The features for all the nodes can be
summarized as a matrix Xa ∈ RNa×d . Thus, more generally, a
graph with features can be represented as Ga = {Aa,Xa }. In the
task of node classification, a portion of nodes have known labels
and denoted asV (where |V| = N ) while the rest are assumed to
be hidden. The set of nodes without a known label is Vh , where
|V| + |Vh | = |Va | = Na . A label for a node v ∈ V can be denoted
as y and the labels for all nodes in V can be denoted as Y. We
are to use the information of nodes in V to infer the labels for
nodes in Vh . The information of a node in V includes its label, its
associated feature vector, and its connection with other nodes. The
features for nodes inV can be denoted as X ∈ RN×d . Furthermore,
a graph G = {V, E} can be induced from the set of nodes V ,
where E consists of all the edges that both their nodes are in V .
Correspondingly, the adjacency matrix for this induced graph can
be denoted as A ∈ RN×N . During the training process, only the
information of the nodes in V can be accessed, which includes
A, X, and Y. We aim to use A, X, and Y to train a model f (·, ·|θ )
such that it can perform label prediction for unseen nodes inVh .
Mathematically, the process can be summarized as:

Q(A,X,Y, f (·, ·|θ )) → θ̂

where Q denotes the learning process and θ̂ denotes the learned
parameters of model f (·, ·|θ ). We can then use the learned model
to predict the labels for the unseen nodes inVh as:

f (Aa,Xa |θ̂ ) → Ŷh
where Ŷh is the predicted labels for the unseen nodes Vh . Note
that the model is allowed to access all the entire information of Aa
and Xa (i.e., not only A and X) during the testing.

3 BACKGROUND
In this section we will briefly introduce Graph Convolutional Net-
works along with relevant epidemic and diffusion models.

3.1 Graph Convolutional Networks
Currently, GCN models are constructed in such a way to utilize a
convolutional operator to enable the neural network weights to be
shared across the graph. This provides a plethora of benefits over



Figure 1: A GCN with two local sampling layers.

Figure 2: A GCN with two global sampling layers.

more naive structures (e.g., a fully connected network) including
the ability to handle networks of different size, avoiding potential
overfitting and parameter explosion, while also providing a mecha-
nism for learning inductive node representations that can be used
in a wide range of network related tasks, e.g., node classification.
The original GCN model [29] performs aggregation for each node
from all its direct neighbors, which becomes prohibitively expen-
sive when the size of graph gets larger. To alleviate this issue, some
have proposed to reduce the possible connections [11, 44]. However,
the most common recent methods have proposed to use sampling
to reduce the number of nodes to aggregate from. Among these
methods, there are two main ways to perform the sampling.

In [22], a local sampling approach was first proposed. As shown
in Figure 1, to perform aggregation for a node v1 in an arbitrary
layer, a fixed number of nodes are sampled from the directed neigh-
borsN1(v1) of nodev1. Then, the aggregation process is performed
over the sampled neighboring nodes instead of all node neighbors.
The sampling process uses only local information, since for each
node it only samples from its direct neighbors.

A global sampling process was first proposed in [9]. As shown in
Figure 2, for each layer, a set of nodes is sampled according to some
global importance measure. The nodes in different layers (including
the mini-batch layer) are connected according to the topology in the
original graph. The aggregation process is then performed only over
the newly built structure. Note that the nodes are still aggregating
from its directed neighbors, but only those neighbors that have
been globally sampled. This could lead to an issue that in a given
layer there could be some nodes without any directed neighbors
sampled in the next layer. For example, in Figure 2 nodeu1 does not
have any sampled directed neighbors in the layer 1, which means
it cannot aggregate information from other nodes.

3.2 Epidemic and Diffusion Modeling
Epidemic models are typically used for modeling processes such
as the spread of an infection on the nodes of a network over their
links [27, 36]. However, this can also be seen from a diffusion per-
spective, where the infected nodes are passing information to some
of those around them and potentially have the chance of forgetting
that information themselves.

The simplest epidemicmodel is Susceptible-Infection (SI) model [1]
where susceptible nodes could possibly catch a disease from a

Figure 3: A visualization of the SIS model where nodes can
be either susceptible or infected.

neighboring infected node. The extended Susceptible-Infection-
Susceptible (SIS) model [2, 36] also considers the case that some
infected nodes might recover from the disease and possibly become
infected again later on. The epidemic process of the SIS model is
shown in Figure 3 where the infection rate β represents the proba-
bility that infected nodes passes the disease to their neighbors who
are currently susceptible nodes (per unit time), while the recovery
rate γ controls the probability that an infected node recovers from
the disease and moves back to the susceptible state. There are also
other extensions [30] such as SIR and SIRS, but in this paper we
focus on the SIS model (with details discussed in Section 4.2).

Two popular diffusion process models are the Linear Threshold
Model (LTM) and Independent Cascade Model (ICM) [27]. In ICM,
when a node vi becomes active, it is given a chance to activate its
inactive neighborvj in the next step and succeeds with a probability
pvi ,vj , which is independent of the history. But if it fails, it cannot
make any further attempts to activate it’s neighbors. The process
continues until nomore activations are possible. In LTM, the process
of becoming activated requires that a given percentage of a node’s
neighbors are also currently activated. Thus, given an initial set
of active nodes and a threshold (either globally or per node) the
process is similar to ICM, but instead requires nodes to only activate
when enough of their neighbors are activated.

Next, in Section 4 we will first draw a connection between the
two GCN aggregation sampling methods with the epidemic and
diffusion models. More specifically, we will show the local sam-
pling in GraphSAGE is similar to ICM, while the global sampling in
FastGCN is similar to SIS with using the infected nodes as the glob-
ally sampled set. Then, we will provide the details of our proposed
Epidemic Graph Convolutional Network.

4 EPIDEMIC GRAPH CONVOLUTIONAL
NETWORK

Now, having briefly introduced Graph Convolutional Networks
and the basic ideas behind the relevant epidemic and diffusion net-
work models, we will introduce our proposed framework, Epidemic
Graph Convolutional Networks (EGCN). First, we analyze the rela-
tionship between the local and global sampling methods to classical
network diffusion and epidemic models. Then, given this new found
relationship, we discuss the challenges facing existing GCN sam-
pling approaches, with emphasis in terms of diffusion and epidemic
modeling. We then propose the use of a low-dimensionally approx-
imated node similarity measure to aid in alleviating these found
issues. Then we discuss how to integrate our similarity measure
into enhancing both the local and global sampling methods. Finally
we present EGCN in its entirety that combines the local and global
sampling into one principled coherent framework.



4.1 Relation Between Local Sampling and ICM
Let us denote the set of initially active nodes in the ICM model as
A0 at time t = 0. Then, for the first step of the ICM model, for
every node vi ∈ A0, they have the opportunity to activate their
neighbors. For example, vi would have this one chance to activate
vj ∈ N1(vi ) according to the probability pvi ,vj , where N1(vi )
denotes the set of first order neighbors (i.e., there exists an edge
between vi and vj ). Generally, we denote the set of activated nodes
at time t + 1 as At+1 = {vj | where vj was activated by vi ∈ At }.
For the comparison of ICM with the local sampling in GCNs, let the
set of initially activates nodes equal to the minibatch set (denoted
as B) from the GCN (i.e., A0 = B). Then, we can start to see the
similarity in the local sampling for layer L−l+1 of the GCN to that of
Al for a GCN with L layers. More specifically, if the local sampling
is to pick s neighbors uniformly (such as in GraphSAGE), then we
can set the probabilities of activating their neighbor vj ∈ N1(vi )
as pvi ,vj =

s
|N1(vi ) |

. Notice then the expectation is that vi will
activate (i.e., sample) s of their neighbors. Thus, a local sampling of
L layers in a method such as GraphSAGE [22], is similar to selecting
the activates nodes from an ICM when the edge probabilities are
set as defined above and activated for L steps.

4.2 Relation Between Global Sampling and SIS
Now that we have shown the relationship between the local sam-
pling with ICM, we now seek to show the relationship of the global
sampling performed in FastGCN to that of the SIS epidemic model.
First, we denote the initially infected nodes in the epidemic as X.
Furthermore, we denote the probability of node vi being suscepti-
ble and infected at time t as {si (t)} and {xi (t)}, respectively, and
then the evolution of infected status can be formulated with the
following differential equation:

dxi (t)

dt
= βsi (t)

N∑
j=1

A[i , j]x j (t) − γxi (t) (1)

where A is the adjacent matrix and βsiA[i , j]x j (t) represents the
probability of node vi catching a disease from node vj . Note that
the infection rate β and recovery rate γ are those introduced in
Section 3.2. At the early stage, si (0) = 1 − c/N ≈ 1 where the
number of initial infected nodes c is small while the total number
of nodes N is large. Therefore, the Eq. (1) can be approximated as:

dxi (t)

dt
≈ β

∑
j

A[i , j]x j (t) − γxi (t) (2)

In a vector form, it is equivalent to:
dx(t)
dt
= β(A −

γ

β
I)x(t) (3)

Let’s write x(t) as a linear combination of the eigenvectors of A:

x(t) =
n∑
r=1

ar (t)vr (4)

Then, substituting back into Eq. (3), we have:
N∑
r=1

dar (t)

dt
vr = β

N∑
r=1

(κr −
γ

β
)ar (t)vr (5)

where κr is the r th eigenvalue. Then, comparing the term in vr ,
we have:

dar (t)

dt
= β(κr −

γ

β
)ar (t) (6)

which has the solution: ar (t) = ar (0)e
β (κr−

γ
β )t . The fastest grow-

ing term in the closed-form solution of Eq. (3) corresponds to the
largest eigenvalue κ1 and its eigenvector v1:

x(t) ∼ ar (0)e
β (κr−

γ
β )tv1 (7)

which is proportional to the eigenvector centrality [4, 5] v1 (which
is a part of a popular class of centrality measures [20]). In other
words, for nodes with higher centrality, they are more likely to
be infected in the early stages of the SIS epidemic. Note that if
γ (i.e., the recovery rate) is too large then the exponential term
becomes negative and the epidemic will die out. Thus, the epidemic
threshold occurs when β(κr −

γ
β ) = 0, i.e., when β/γ = 1/κ1. Thus,

β and γ can be chosen to allow for a steady epidemic according to
κ1. Furthermore, an analysis can be performed at late stages in the
epidemic when dxi (t)/dt = 0 to again show the infected nodes are
proportional to the eigenvector centrality (with details in [36]).

Note that in FastGCN the set of globally sampled nodes ulti-
mately ends up being from the below node importance distribution:

q(i) = | |Â[:,i] | |
2 /

∑
vj ∈V

| |Â[:, j] | |
2, vi ∈ V (8)

where Â is a normalized version of the adjacency matrix A and
Â[:,i] denotes the ith column of Â. More specifically, Â = D̃

1
2 ÃD̃

1
2 ,

where Ã = A + I, D̃ii =
∑
j Ã[i , j] and I is the identity matrix. Thus,

both the infected nodes and globally sampled nodes in FastGCN, are
being sampled according to their global importance in the network,
although somewhat differently defined.

4.3 Challenges with Local and Global Sampling
In this subsection, we present a discussion on the challenges of de-
signing a proper sampling technique for the GCN aggregation pro-
cess by discussing the inherent downsides of the existing local and
globalmethods. These views also incorporate some ideas/perspectives
when thinking in relation to the newly discovered similarity to clas-
sical diffusion and epidemic models.

First, as previously mentioned, GraphSAGE [22] is a representa-
tive local sampling GCN model (as seen in Figure 1). In this method,
a minibatch of nodes is first selected and then nodes are selected to
aggregate from using their local neighborhood. In each layer of the
GCN each of the nodes uniformly samples a set of s nodes. The first
noticeable problem is that typically these models require the sam-
pling of a large set of nodes (e.g., GraphSAGE recommends 25 nodes
in the first layer and 10 in the second layer [22]). This results in an
exponential expansion of the nodes that are required to aggregate
from in terms of s (which is not necessarily the same in all layers).
Another problem arises in the fact that this style of sampling uni-
formly at random is susceptible to both noisy connections and any
potential adversarial links (which recently has become a popular
topic of interest in the GCN domain [3, 12, 41, 48, 49]. In compari-
son with ICM, it is more likely that nodes are becoming activated
in real network diffusion cascades from more similar neighbors
as compared to uniformly at random. Also, in ICM, noisy links
(i.e., two connected nodes) that do not interact much will result



in a probability between them being very low (even approaching
zero). Thus, the local sampling methods are still open to poten-
tial improvements, specifically desiring a principled distribution to
sample nodes from their local neighborhood. This could potentially
allow the avoidance the challenges of using a local sampling such
as, avoiding noisy connections, reduce the number of needed sam-
ples (i.e., smaller s), having a more informed aggregation beyond
assuming all neighbors are equal (i.e., inferred weighted edges).

In comparison, for the global sampling, the problems/challenges
are quite different. As mentioned in Section 3, a representative
global sampling GCN model is FastGCN [9]. The premise of this
model is to avoid the exponential expansion that happens within
the local sampling method. More specifically, the global sampling
method attempts to independently perform a global sampling for
each layer of the GCN. However, one potential drawback of this
methodology of sampling is that within larger networks problems
could arise, since inherently many nodes in a minibatch might
not connect to a given selected subset of globally important nodes.
Furthermore, there could exist many real-world graphs that by
construction have many nodes not connected to globally impor-
tant nodes, and thus resulting in a biased training process. In other
words, some nodes in minibatches (or those in other sampled layers)
might not be able to find a node to aggregate from. Similar to in
the local sampling case, it is desired to not only guarantee possi-
ble nodes to aggregate from, but furthermore to have a principled
weighting according to the nodes local neighborhood and not only
a global measure. Hence, to partially alleviate some of the problems
discussed in both the local and global sampling techniques, we
propose the use of a structural similarity measure during the sam-
pling/aggregation process. We also note that for some graphs, such
as social networks, if given information cascades (e.g., retweets
pathways on Twitter), we could use that information in addition to
structural node similarity, but we leave this as one future work.

4.4 Node Similarity to Alleviate Challenges
As previously mentioned, here we will introduce the usefulness of
harnessing a similarity measure to improve the local and global
sampling/aggregation methods.

For the local aggregation, we propose the use of this similarly to
first perform a top-s sub-sampling of each node’s neighborhood. In
other words, for each node v ∈ V , we use the similarity to select
the at most stop neighbors fromN1(v) to form the setN1

s (v). This
helps to alleviate noisy links and also allows us to lower the number
of needed samples if we are focusing on aggregating from the most
similar neighbors (in terms of network structure). Furthermore, the
similarity (which we will later define) will be used to perform a
weighted averaging over the setN1

s (v) for a nodev , again providing
more informative and principled information.

For the global sampling, we will utilize the similarity to resolve
the issue of having nodes in the minibatch either not having many
connections to the globally important set of nodes, or lacking many
connections. In other words, we can utilize the similarity to perform
a full aggregation over all the sampled global nodes according to
a weighted average based on the nodes similarity to each of the
sampled nodes (even if a direct link between them does not exist).
Furthermore, inherently a principled weighted average as compared

to a uniform aggregation is preferred, which is provided through
the use of the node similarity measure.

In choosing the node similarity measure, there are many such
methods [32]. However, we have two requirements: 1) it needs to
be a global similarity measure, such that in the global sampling
we can still have a non-zero similarity for many nodes, and 2) it
also needs to be both computationally feasible in both terms of
time and space. Thus, we propose the use of a low-dimensional
approximation to the Katz similarity measure[26], which has shown
to perform well for the link prediction task [33]. The standard Katz
similarity measure can be defined as follows:

S =
∞∑
k=1

αkAk + δ (9)

where α is used to exponentially decay the importance of paths of
length k and δ can be used to provide a non-zero similarity to all
nodes. However, the close form solution to this is intractable for
larger graphs in both computational time and space (as we would
need to store the entire denseO(N 2)matrix). Thus, we can calculate
a low-dimensional approximation of this similarity measurement
instead. First, we note that in our setting of an undirected graph, the
adjacency matrix A is symmetric and can be diagonalized as A =
UΛU⊤, where U ∈ RN×N and Λ ∈ RN×N are the eigenvector and
diagonalized eigenvalues, respectively. However, rather than the
full eigen-decomposition, we can instead perform it being truncated
to only the largest c eigen-pairs. Thus, we then have the following:

A ≈ ŪΛ̄Ū⊤ = Ā (10)

where Ā is the low-dimensional approximation of the adjacency
matrix A, Ū ∈ RN×c and Λ̄ ∈ Rc×c . If we furthermore limit the
similarity to only considering paths of up to lengthK we can obtain
the low-dimensional approximated similarity measure between vi
and vj as follows:

S̄[i , j] =
K∑
k=1

αk Ūi Λ̄k Ū⊤
j + δ (11)

due to the fact that Āk = (ŪΛ̄Ū⊤)k = ŪΛ̄k Ū⊤ and thus providing
a more efficient computational calculation for node similarity. Note
that for our similarity calculations we instead use the normalized
adjacency matrix Â as described in Section 4.2 instead of A.

Furthermore, we note that in this way we are able to avoid the
computation of the entire similarity matrix. Due to the fact we will
use a fixed set of most similar nodes to aggregate from instead of
performing a random local sampling for each minibatch, we can
precompute these to find the top-s neighbors for each node vi . In
more detail, we compute the similarities S̄[i , j] ∀vj ∈ N1(vi ) and
select out the top-s most similar neighbors to form the sub-sampled
neighborhood N1

s (vi ). Note that for computational efficiency we
restrict the search for the top-s most similar nodes to be among the
first order neighborhood of vi (i.e., in the setN1(vi )). However, for
the global sampling, we need to compute the similarity from each
node in our minibatch to the nodes that are globally sampled, since
they will be dynamically changing during the training (unlike the
local fixed sampled set). Note that a cache could be used to further
improve the efficiency by not having to recompute similarity scores
by computing the similarity from each node to a small number of



globally important nodes (as they are the ones more likely to be
sampled). Next we will discuss in detail how we perform the local
and global sampling/aggregation stages of our EGCN framework.

4.5 The Proposed Local Aggregation Details
We describe how to perform the local sampling and aggregation
process in this subsection. We adapt the sampling and aggregation
operations in the GraphSAGE model to form the local sampling
and aggregation components of our model. However, instead of
uniformly sampling from the first order neighbors of a node vi ,
a fixed number of most similar nodes (i.e., the set N1

s (vi )) are se-
lected according to the similarity measure. To aggregate the infor-
mation from the sampled nodes N1

s (vi ) for node vi , we use the
weighted average of representations of the sampled nodes as the
new representation of the node. Mathematically, generating the
representation for node vi in the l-th layer of proposed network
can be formulated as:

hli = σ

( [
hl−1
i ,

1∑
vj ∈N1

s (vi )
S̄[i , j]

∑
vj ∈N1

s (vi )

S̄[i , j]h
l−1
j

]
Wl

)
(12)

where hli denotes the obtained dl -dimensional representations for
node vi after the l-th layer, [·, ·] denotes concatenation, Wl ∈

R2dl−1×dl is the weight matrix of the l-th local sampling and ag-
gregation layer, and σ is a nonlinear activation function. Note that
h0
i is the associated feature vector of node vi , which means that

h0
i = xi . A total of L layers of sampling and aggregation operations

can be stacked. The output representation of the local sampling and
aggregation component for node vi is hLi , which, for convenience,
also denoted as the e-dimensional (with e = dL) representation zlsi .

4.6 The Proposed Global Aggregation Details
As previously mentioned, we propose to utilize an SIS epidemic
model to perform the global sampling in EGCN. To do this, we
initially select a random sample of nodes to e “infect” (denoted as
X0) and then throughout the training, ever E updates (i.e., mini-
batches), we perform a step of the SIS model. This step will allow
the infected nodes to infect each of their neighbors independently
with probability β and then with probability γ change themselves
to being susceptible again (instead of infected). As shown in Sec-
tion 4.2, we can select hyperparameters for the SIS model (i.e., β and
γ ) to obtain a relatively stable infection (according to κ1) where the
small number of nodes infected at any given step will be more likely
those having a high importance. Thus, for a given step t during the
epidemic, we let the set of infected nodes at that time be denoted
by Xt .

Given we have a set of infected nodesXt at time t , we can obtain
the global sampling based e-dimensional representation zдsi from
the global sample for each node vi in minibatch B as follows:

zдsi = σ

( [
xi ,

1∑
vj ∈Xt

S̄[i , j]

∑
vj ∈Xt

S̄[i , j]xj
]
Wд

)
(13)

where we use [·, ·] to denote concatenation, Wд ∈ R2d×e is the
weights of the global sampling single layer GCN, and σ is a nonlin-
ear activation function.

Figure 4: A visualization of the proposed EGCN Framework.

4.7 Overview of the EGCN Framework
Thus far we have shown how to obtain both the local and global
sampling based representations zls and zдs , respectively. These can
be seen in Figure 4 where on the left we have the local sampling and
the right shows our global sampling according to the SIS model.

Now, we combine them into a unified representation that har-
nesses the power from both our enhanced local and global sam-
pling/aggregationmethods into a single representation zi for a node
vi that can be trained and used for tasks such as node classification.
More specifically, we denote the unified representation as follows:

zi = πzlsi + (1 − π )zдsi (14)

where here we linearly combine the local and global representations
through the tunable hyperparameter π (which controls the balance
between favoring the local/global sampling). Note that this choice
also importantly is used to allow for a better understanding of the
contribution of these two methods in EGCN (which is discussed in
Section 5.5).

5 EXPERIMENTS
In this section, we perform an empirical evaluation to experimen-
tally show the effectiveness of the proposed Epidemic Graph Con-
volutional Network (EGCN) towards learning inductive node rep-
resentations. Through these experiments we seek to answer the
following questions: (1) Can EGCN learn meaningful inductive
node representations? and (2) Does using both locally and glob-
ally important sampled nodes in the node aggregation allow for
learning better node representations (i.e., improved performance)?

We conduct experiments to answer the first question by per-
forming the inductive node classification task by learning node
representations using EGCN and comparing against baseline meth-
ods including state-of-the-art for this given task. Furthermore, we
perform a parameter analysis to investigate the contribution of dif-
ferent components of the proposed Epidemic Graph Convolutional
Network to answer the second question and better understand the
model. These experiments are performed on a set of commonly used
real-world graph datasets for the node classification task, where
the size of the graph varies and also the number of node classes, as
these two factors can greatly impact the performance.

5.1 Experimental Settings
Here we first introduce the datasets, then discuss the settings used
in EGCN, followed by a description of the baseline methods we
have compared against, and finally discussing the details for the
metrics used for evaluation on the node classification task.
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Figure 5: Effect of varying the balance between local/global in EGCN Cora/Citeseer/Pubmed datasets with π along the x-axis.

Table 1: Basic statistics of the three real world datasets.

Network # Nodes Edges Classes Features Training/Validation/
Testing

Cora 2,708 5,429 7 1,433 1,208/500/1,000
Citeseer 3,327 4,372 6 3,703 1,812/500/1,000
Pubmed 19,717 44,338 3 500 18,217/500/1,000

Table 2: Results on accuracy for node classification.

Embedding Method Cora Citeseer Pubmed
NodeFeats 0.7380 0.7530 0.8750
GraphSAGE 0.8220 0.7140 0.8710
FastGCN 0.8500 0.7760 0.8800

EpidemicGCN 0.8430 0.7910 0.9060

5.2 Datasets
We evaluate our methods on several widely used benchmarks for
node classification, which includes Citeseer, Pubmed and Cora [40].
In these datasets, nodes are documents and edges are the citation
links between documents. Each of the document can be represented
as a sparse bag-of-words feature vector, which can be viewed as
the features associated to the nodes. Some of the basic statistics
and the splitting of the dataset can be found in Table 1.

5.3 EGCN Hyperparameter Settings
For EGCN1, we set the hyperparameters as follows. First, for the
low-dimensional approximated similarity, we set the low rank di-
mension c = 128, α = 0.85 that controls the contribution of longer
order paths towards the similarity, δ =1e-05 to allow non-negative
similarities, and the maximum approximated path-length to be
K = 3. Then for the local sampling, we fix the top-s = 5 where
we are aggregating form a fixed up to 5 neighbors for every node.
We set the parameter γ = 1 in the global sampling SIS model (i.e.,
the recovery rate is 100%) to help promote diversity in the sam-
pled (i.e., infected) sets, while β is chosen to maintain roughly 200
infected nodes (i.e., |Xt | ≈ 200 ∀t ). In the SIS model, we set the
parameter E for the number of minibatches before updating to the
next time step in SIS to be E = 50, to balance between obtaining
new global sampled sets, the efficiency of running less epidemic
time steps, and stability during training using the same sampled
batch for a set of minibatches in a row. For Cora and Citeseer
we use an initial set of infected random nodes |X0 | = 256 and

1https://github.com/DSE-MSU/EpidemicGCN

for Pubmed we use |X0 | = 512. For the local, global, and final
unified representations we use an embedding size of e = 128 for
EGCN across all three datasets. For training we use Adam [28]
to update the parameters in minibatch fashion with |B| = 256
for Cora and Citeseer while using |B| = 1024 for Pubmed. For
the nonlinearity, we use σ to be ReLu [35]. The parameters are
set using a grid search on for tuning according to the validation
set, we have λ which is the regularization penalty on the L2-norm
across all the learned weights of EGCN, learning rate η, and π
which controls the contribution of the local versus global sam-
pling/aggregation. During the tuning we vary these parameters
as follows: λ ∈ {1e − 02, 1e − 03, 5e − 04, 1e − 04, 5e − 05, 1e − 05},
η ∈ {0.1, 0.05, 0.01, 0.005} and π ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

5.4 Performance Comparison
We compare the proposed EGCN with two samplings based GCN
methods, GraphSAGE and FastGCN. To demonstrate the effective-
ness of the network information, we also include a method denoted
as NodeFeats, which only utilize the node features while ignoring
the connections between nodes (i.e., NodeFeats directly uses the
node features instead of using a GCN to learn representations).
Note that we use the suggested parameters for both GraphSAGE
and FastGCN as suggested by the authors in their respective works
for these datasets. The results of node classification can be found
in Table 2 where we observe that our method achieves comparable
or even better performance than the baselines. EGCN especially
outperforms the baselines with a large margin in the Citeseer and
Pubmed datasets. Thus it appears that overall EGCN is able to learn
meaningful inductive node representations; thus answering our
first experimental question.

Based on our findings, we can observe that our local sampling
neighborhood is smaller than that of GraphSAGE, but yet we are
still able to outperform, which implies that the use of a fixed top −

k neighbbors according to similarities (while also performing a
weighted average) helps EGCN to improve performance. Similarly,
when compared against FastGCN, on the larger dataset, Pubmed, we
observe that this is where we find the largest improvement, which
is likely due to the global sampling challenges we had discussed
previously when applying to the larger networks.

5.5 Parameter Analysis
The most important parameter to analyze here is π as that gives in-
sight into the role the enhanced local and global sampling/aggregation
mechanisms are to the combined power of EGCN. We first note that

https://github.com/DSE-MSU/EpidemicGCN


the best performance among the tested π values was π = 0.6 for
Cora and Pubmed and π = 0.8 for Citeseer. In Figure 5 we show the
performance across the entire set of π values for our three datasets.
Note that we kept all other parameters fixed when varying π for this
analysis according to the best found for that given dataset during
the grid search. Furthermore, we point out that using π = 0 is only
considering global sampling with SIS and π = 1.0 is effectively only
local sampling. Therefore, based upon both Figure 5 we can indeed
see that both the local and global sampling/aggregation are mean-
ingful and that together they achieve the best performance; thus
answering our second proposed experimental question. However,
the performance was quite stable for the Pubmed dataset.

As common with GCN models, we noticed that the L2-norm
and learning rate influenced the performance, and the best settings
found were the following. Learning rate on Cora and Citeseer was
η = 0.05, while for Pubmed we found the best to be η = 0.01. As for
the L2-norm, for Cora and Citeseer we observed that λ = 5e − 04
performed the optimal in our examined range, and λ = 1e − 05 for
Pubmed.

6 RELATEDWORK
In this section, we briefly review related work to GCNs and epi-
demic/diffusion models.

6.1 Graph Convolutional Neural Networks
Graphs are an essential representation for many data in various
areas such as social networks, academic citation networks and trans-
portation networks. Recently, many methods have been made to
generalize deep neural networks to graph structured data. Among
them, graph convolutional networks (GCNs) [13, 29], which adapted
the classical convolution operation in classical Euclidean data to
graph structured data, have gained extreme popularity. The key
operation for GCNs is to aggregate features for each node from
all its direct neighbors. This operation is natural and flexible re-
gardless of the structure and size of the graphs. However, it could
become prohibitively expensive when the size of graph gets large.
To alleviate this issue, recent efforts have been made to reduce the
number of nodes to aggregate from for each convolution operator.
Other models such as PinSage [44] and Cluster-GCN [11] have re-
cently been proposed that reduce the aggregation through limiting
neighbors by either utilizing random walks similar to [18] (which
in the limit approximates the Personalized PageRank [21, 24, 38])
or utilizes clustering boundaries, respectively. From the global sam-
pling perspective, in [23] they had improved upon the sampling
method of FastGCN [9] by adaptively sampling to ensure the better
connectedness between aggregation layers. In [45], P-GNN was
introduced that creates anchor-sets of nodes to be the commonly
used aggregation sets for all nodes according to a similarity mea-
sure (instead of local neighborhoods); where our globally sampled
sets of nodes can be compared to their anchor-sets.

6.2 Epidemic and Diffusion Modeling
The epidemic and diffusionmodels are used formodeling the spread-
ing or diffusion through the networks across the connections be-
tween nodes. Some classical epidemic models [1, 2, 30, 36] includes
Susceptible-Infection (SI) model, Susceptible-Infection-Susceptible

(SIS) model, Susceptible-Infection-Recovery (SIR) model. Linear
threshold model (LTM) and independent cascade model (ICM) [27]
are two most popular diffusion models. As explained in Section 4, a
local sampling of l layers in a method like GraphSAGE [22], is sim-
ilar to selecting the activates nodes from an ICM while the global
sampling methods in FastGCN [9] is similar to selecting infected
nodes from a SIS model.

7 CONCLUSION
Recently, many works have witnessed the power of graph convo-
lutional networks (GCNs) in lots of applications, but the lack of
scalability hinders the potential applications for large-scale net-
works. This has led recent GCNs towards sampling techniques
to still be applicable in training on large networks. However, the
two primary sampling techniques, i.e., local and global, both have
inherent shortcomings. Thus, in this paper, we first observe and
formulate similarities between these two sampling methods and
classical epidemic and diffusion models. Then, given this insight, we
formulate our proposed Epidemic Graph Convolutional Network
(EGCN) framework harnessing a low-dimensional approximation
of the path-based Katz similarity.

On the one hand, from the local sampling perspective, EGCNnow
provides a principled mechanism for the local sampling according
to the top-s most similar nodes based on this similarity. This also
allows to reduce the exponential expansion in the local sampling
by selecting a smaller s due to the improvement found in using the
top-s neighbors as compared to a randomly selected s . On the other
hand, from the global sampling perspective, EGCN is built upon
the SIS epidemic process, which has been shown to infect/sample
nodes proportional to their eigenvector centrality values, and also
paired with the similarity to alleviate the issues of not having
direct connections to the globally sampled nodes. Furthermore,
in both sides of the sampling the efficient similarity allows for a
weighted aggregation based on the approximated Katz structural
similarity. Thus, the proposed EGCN overcomes the drawbacks
of the previously proposed methods and experiments on three
real-world datasets demonstrate its effectiveness compared with
state-of-art baselines.

Our future work will first be to extend similar techniques to
GCNs ofmore complex types of graphs, such as signed networks [14],
where we would have to incorporate signed node similarities mea-
sures [15]. Thereafter, we will work towards the development of
defensive robust GCN models [47, 50] that are able to withstand
state-of-the-art GCN attack methodologies [34, 48, 49]; since re-
cently adversarial attacks and defenses across all domains have
become a critical area for investigation [43]. We believe the use of
low-dimensionality will be beneficial and also the incorporation of
similarity to avoid the noisy or any potential adversarially added
links when constructing more robust GCN models.
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